Ⅰ类误差、Ⅱ类误差、Kappa系数

在这里插入图片描述

### ENVI 中监督分Kappa 系数总体分精度 #### 总体分精度 总体分精度是指分结果中正确分像元的比例。具体来说,这是通过对混淆矩阵中的对角线元素求并除以总像元数来获得的数值[^2]。该指标反映了分算法的整体性能,但未能体现不同别之间的误差分布情况。 #### Kappa 系数 Kappa 系数是一种衡量分一致性程度的统计量,考虑到了偶然因素的影响。其值范围通常介于-1至1之间,其中正值表示观察到的一致性高于预期随机水平;负值则相反。当 kappa 接近 1 时,意味着分效果非常好,而接近 0 或者小于零的情况表明分质量较差[^4]。 在 ENVI 软件环境中执行监督分之后,可以通过构建混淆矩阵来进行上述两个重要评估参数——即总体分精度以及 Kappa 系数——的计算。这有助于更全面地理解模型的表现,并为进一步优化提供依据。 ```python import numpy as np def calculate_kappa(confusion_matrix): n = np.sum(confusion_matrix) sum_po = 0 sum_pe = 0 for i in range(len(confusion_matrix)): sum_po += confusion_matrix[i][i] row_sum = np.sum(confusion_matrix[i, :]) col_sum = np.sum(confusion_matrix[:, i]) sum_pe += row_sum * col_sum po = sum_po / n pe = sum_pe / (n*n) return (po - pe) / (1 - pe) confusion_matrix_example = np.array([ [65, 8], [9, 78] ]) kappa_value = calculate_kappa(confusion_matrix_example) print(f"Kappa Coefficient: {kappa_value}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

孙 悟 空

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值