基于含有非期望产出的SBM模型的共同前沿和群组前沿的DEA效率测算

该博客介绍了基于非期望产出SBM模型的DEA效率计算方法,尤其适用于分析能源效率。通过将DMU分为多个群组,可以更准确地评估各地区能源使用效率,克服了传统方法忽视地区差异的问题。文章提供了Python代码实现,支持规模报酬可变和不变两种情况,并引用了相关文献对中国能源效率的省际差异研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天介绍一个新的DEA模型,即基于含有非期望产出SBM模型测算群组前沿和共同前沿的DEA效率,在研究能源效率时常常用到。

   由于各省之间的能源使用效率,受限于经济发展水平等诸多因素的限制,因此各省面对的生产前沿面也必然存在一定的差异,因此如果继续使用总体样本进行效率评价,将无法反映各地区的实际情况。

   因此,将各省区划分为不同的群组,基于群组前沿和共同前沿来测算DEA效率。具体的DEA规划式如下:

如将DMU划分为h组(h=1,2,,,H),群组前沿的SBM模型:
在这里插入图片描述

共同前沿的SBM模型:

图片

  代码使用python编写,有规模报酬可变与规模报酬不变两个版本,可增减变量,测算时只需要划分好群组即可。

参考文献:《中国能源影子价格和能源环境效率省际差异

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值