相位式激光测距

在这里插入图片描述
相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返测线一次所产生的相位延迟,再根据调制光的波长,换算此相位延迟所代表的距离。即用间接方法测定出光经往返测线所需的时间。相位式激光测距仪一般应用在精密测距中。由于其精度高,一般为毫米级,为了有效的反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪都配置了被称为合作目标的反射镜。

模拟测相原理图

如果这时候遇到一堵墙或者一面镜子,光路沿原路返回,情况如下:


其中蓝色是发射光,红色是反射光,从图中可以很清楚的看到,当发射光遇到了墙之后发生发射,其反射的波形实际上是没有遇到墙之后波形的镜像,因此其相位差的大小与光速没有关系,而和发射光在何时遇到障碍物有关。
设发射器与反射处的距离为x,激光速度为c往返他们之间所用的时间为t。设调剂波频率为f,从发射到接收间的相位差为φ
只要测出φ,根据
φ= 2πft(f是调制波的频率)
t=2x/c
φ = 4πfx/c = 2πN+Δφ 其中N为完整周期波的个数,Δφ为不足周期的余相位。
x =φc/4πf = c/2f[(2πN+Δφ)/2π] = c/2f(N+ΔN)
N为整尺数,ΔN为余尺。
可以通过测定2π的尾数Δφ。根据测得的相位移大小,可知道余尺ΔN=Δφ/2π的大小,但是目前任何测量相位的方法都不能测出整数个2π周期N的值。
如何确定N?
多尺测量方法确定N
因为N值不能确定,因此x= c/2f(N+ΔN)会产生多个解,所以距离X就不能确定。解决此问题的办法是可以选用一个较低的测尺频率,测尺长度L1大于测量距离x,这种情况下不会出现距离多解值。但是会导致测距误差,并且测尺L1越大,误差越大。
如何避免此类误差?
为了得到较高的测距精度,可以选用一个较高的测尺频率,测尺长度L2小于测量距离x,系统的单值测定距离就相应变小了。
既要长测程又要高精度,一般解决的办法是:待测距离x大于基本测尺L2(精测测尺),再使用一个或者几个辅助测尺L1(粗测测尺),然后将各个测尺测的距离组合起来得到单一的距离信息。 比如测距离2.056米,用10米的测尺L1测得不足10米的尾尺2米,再用0.1米的测尺L2测得不足0.1米的尾数0.056米, 2+0.056=2.056米。这样就解决了大量程和高精度的矛盾。
L=c/2f
其中最长测尺决定了测距量程,最短测尺决定了测距精度。理论上最长测尺就是量程,但是因为硬件条件方面的限制,测程到达不了最长测尺的长度。
如果用10米作为精尺,1000米作为粗尺,则精尺频率:f2 = c/2L2 = 15 MHZ,粗尺频率:f1= c/2L1 = 150 KHZ。
选尺特点:所选短尺测量范围必须大于上一尺的误差范围。ex : 选取三把尺子测量距离。分别为长、中、短三尺。假设长尺测量距离为100米。误差为2米左右。则选择中尺的可测量距离必须要大于2米,设中尺误差为0.1米,则选择短尺测量范围必须大于0.1米。如果需要测量更高精度,则需要继续添加更短的精尺测量。但是选尺必须按照选尺特点选择。
只能算出大概数值,实际上光速要小于3*10^8 m/s,而且c还和实际大气情况有关,比如矿井温湿度,气体成分,风速等。因此这些频率需要进一步调整,具体做法是现场标定。
总结:相位式激光测距 , 为了提高测量精度 , 通常需要把激光调制频率提高到几
十兆甚至几百兆; 为了增大量程 , 通常把激光调制频率降低到几兆甚至更低 ; 为了提高测量相位的精度 , 通常把发射信号和回波信号与本振混频进行移相和鉴相测相。如要同时实现高精度和大量程 , 则需要多组激光调制频率 , 且随着测量精度的提高 , 调制频率会不断的提高 , 这些对电路性能要求会越来越高 , 电路的复杂度也会随之增大 , 各个信号之间的串扰会随之严重。

范围和精度
相位式激光测距,一般精度是毫米级的,国外的做的好的,精度可以做到1MM,比如莱卡,博世,喜利得,福禄克,国内目前做的稍微差一点,距离一般在100M以内,精度在2到3个毫米,比如常州瑞得,南京大友,成都捷测,深圳威睿晶科。
混频原理
模拟相乘混频器
混频是将一个信号频率从一个量值变成另一个量值的过程。

模拟相乘混频器
设输入信号分别为Us=Um1 cos(ω1t +φ1) UL=Um2 cos(ω2t +φ2),经过模拟相乘乘法器以后得到:U= 1/2KMUm1 Um2cos[(ω1+ω2)t +φ1 +φ2]+ 1/2KMUm1 Um2cos[(ω1-ω2)t +φ1 -φ2]。
由上式可以看出,经过模拟乘法器将两个信号相乘,就实现了两个信号的差频与和频,其中KM为增益系数,通过带通滤波器或者低通滤波器后就可以得到差分输出:
U=1/2KMUm1 Um2cos[(ω1-ω2)t +φ1 -φ2]。
混频使用
精尺频率15MHZ的正弦信号是中高频信号,对其进行测量是很困难的,这样就要求对信号波形做一定的变化,在保证相位不变的情况下降低信号频率。使模数转换器(ADC)采样更容易。
在相位式测距系统中,由DDS发出调制信号和APD接受到回波信号分别为U1,U2。
U1=cos(ωt +φ1)
U2=cos(ωt +φ2)
其中 ω=2πf,f是精尺频率,其值为15MHZ,此时两路信号的相位差是φ1-φ2。另外一个DDS发出本振信号 U3= cos(ω1t +φ3),ω1=2πf1,f1是本振频率,值为14.985MHZ,
将调制U1与本振U3混频,U1*U3=1/2 cos[(ω+ω1)t +φ1+φ3)+ 1/2 cos[(ω-ω1)t +φ1-φ3)
使用低通滤波器保留其低频(15KHZ)的正弦信号,得到:
Us= cos[(ω-ω1)t +φ1-φ3)
同样方法得回波信号U2与本振信号U3混频后的信号
UL= cos[(ω-ω1)t +φ2-φ3)
由此可以看出Us与UL的 相位差 φ=(φ1-φ3)-(φ2-φ3)=φ1-φ2
由此可见,混频前后相位差不变,信号频率降低到了15KHZ。
同理可得,对于粗尺频率150KHZ,引入本振频率为135KHZ,经过上述方法,同样可以在相位差不变的情况下,将信号频率降低至15KHZ。

差频测相原理

相位式激光测距的测量精度主要取决于测相精度。基于信号频谱鉴别相位的方法,需要对采样信号进行数字信号处理。需要将回波信号这样的模拟量转换为数字量,采样过程需要遵循一定的条件,系统中采用模数转换(ADC)实现,采样过后的数据进行快速傅里叶变换(FFT)算法。
采样定理
A/D转换是相位法测距的主要组成部分,是整个数字化处理的基础,从模拟的连续时域信号到离散的数字信号,应该遵循一定的原则。这就是数字信号处理领域著名的采样定理。
Nyquist采样定理
Nyquist采样定理是针对基带信号而言,又称为低通采样定理。
原理:如果以不低于信号最高频率的两倍采样速率对带宽信号进行采样,那么所得到的离散采样值就能准确的确定原信号。该定理的用意在于,时间上连续的模拟信号可以用时间上离散采样值来取代。为模拟量的数字化处理提供了理论依据。
设有一个频率带限信号X(t),其频带限制在(0,fH)内,如果以不小于两倍fs=2 fH的采样频率对X(t)进行等间隔采样,得到离散的采样信号X(n)=X(nTs),其中Ts=1/fs,是采样间隔,则原有信号X(t)将被得到采样值X(n)完全的确定,采样之后,信号频谱周期化。变成原来信号移频后的多个谱叠加。

带限信号X(t)的频谱

X(t)采样后的信号频谱
Xs(w)包含X(w)的频谱,虚框部分只要满足fs>=2 fH或者Ws>=2 WH,则虚框部分不会与其他部分相混叠,这时候这需要一个带宽大于等于2 WH的低通滤波器,就能滤出原来的信号X(t)。
带通信号采样定理
带通信号采样定理也叫带通采样定理,欠采样定理,中频采样定理。
用带通信号采样定理原因:Nyquist采样定理只讨论频谱发布在(0,fH)上的基带信号采样问题,如果基带信号的频率分布在某一个有限的频带上(fL,fH)上时,也需要遵循一定的采样规则,当fH >>B=fH- fL时,也就是当信号的最高频率远远大于其信号带宽频率B时,如果按照Nyquist采样率来采样的话,其采样率会很高,很难实现,或者处理速度满足不了要求。这样可以按照带通采样定理来采样。
带通信号采样定理
设有一个频率带限信号X(t),其频带限制在(fL,fH)内,如果采样率满足fs=2 (fH +fL)/2n+1, n取满足fs>=2 (fH -fL)的最大正整数(0、1、2、3 ……),fs进行等间隔采样所得到的信号采样值X(nTs)能准确2确定原有信号X(t)。将被得到采样值X(n)完全的确定,采样之后,信号频谱周期化。变成原来信号移频后的多个谱叠加。
fs=4f0/2n+1
f0是中频信号 f0=(fH +fL)/2,n取满足fs>=2 B的最大正整数(0、1、2、3 ……)。当f0=fH /2,B=fH时,n取0时,fs=4f0/2n+1 就是Nyquist采样定理。满足fs=2 fH。为了确定频带宽度B,为了能用最低采样速率即两倍频带宽度的速率(fs=2 B)对带通信号进行采样,带通信号的中心频率必须满足f0=(2n+1/2)B或者fH +fL=(2n+1)B。就是说信号最低和最高频率相加的带宽的整数倍。

采样前

采样后
带通采样定理使用的条件是只允许在一个频带上存在信号,但是不允许在许多不同频带上同时存在信号。这样会引起混叠,但实际情况上是在多个带频上都有信号,为解决这个问题,应该在采样前先将信号通过带通滤波器,也叫抗混叠滤波。

离散傅里叶公式:F(k) = ∑(N-1 n=0) x(n)* e^-j (2πkn)/N k=0,1…,N-1 。 其中F(k)是得到的傅里叶频谱函数 x(n)是原波形函数。
采样频率至少应该是原波形频率的2倍, ex:原波形为10KHZ ,采样率>=20khz
采样点数必须是一个完整周期,ex:原波形为10KHZ ,采样率=100khz 则采集一个周期需要10个点。那么只能设定10,20,……….10x个点。
所采集的数据放在OriginalBuf数组里面。根据n的不同只需要用指针去指向数组中对应n的值即可。N是采集点的总个数。K=信号频率/采样分辨率 采样分辨率=采样频率(Fs)/采点个数。为了周期完整性,也就是能正确的采集到完整周期波形,所以采样频率必须是信号频率的整数倍。就是说假设一个周期采四个点,那么采点数必须是四的整数倍。
根据欧拉公式 e^ix =cos(x)+sin(x)i 其中cos是实部 sin是虚部。傅里叶变换可以把任何信号用正弦和余弦信号表示,也可以把时域信号转换成频域信号。
所以傅里叶公式为
F(k) = ∑(N-1 n=0) x(n)
( cos(2πkn/N ) -sin(2πkn/N ) ) k=0,1…,N-1 。
所以F(k)实部real = (∑(N-1 n=0) x(n)* cos(2πkn/N ) ) /N ;(一个点就可以求出原函数的幅值,所以累加后的结果这里要除以N)
F(k)虚部imag = (∑(N-1 n=0) x(n)
-sin(2πk*n/N ) ) /N;
所以该点k的相位=atan(虚部,实部) 等于实部与虚部的反正切。幅值等于 sqrt ((实部real) ^2 + (实部real) ^2) k点的 实部平方 加 虚部平方 再开方 。

     ^ y
     |_______
imag ^      /|  
     |     / |
     |  L /  |
     |   /   |
     |  /    |
     | /     |
     |/  θ   | 
      ——————->———————————————————> x
             real
      虚部imag为对边
      实部real为邻边
      斜边L为原波形的幅值
      角θ是相位
<think>嗯,用户想了解相位编码脉冲压缩的原理和实现方法,特别是在雷达信号处理中的应用。首先,我需要回忆一下相关的知识。相位编码脉冲压缩应该是一种通过调制信号相位来提高分辨率和抗干扰能力的技术。根据引用[3]和[4],脉冲压缩技术包括线性调频(LFM)、非线性调频(NLFM)和相位编码等。相位编码的不同之处在于其相位调制是离散的,使用伪随机序列,比如二相码中的巴克码或m序列。 用户可能想知道基本原理,比如为什么相位编码能提高TB值,以及如何通过编码解决雷达作用距离和分辨率之间的矛盾。根据引用[4],相位编码信号在TB值较小时主副瓣比高,压缩性能好,而码元宽度越小带宽越大。这需要解释清楚相位调制的离散性,以及不同编码的特点。 然后是实现方法,可能需要用Matlab来演示。引用[2]和[4]提到了Matlab实现,所以应该给出示例代码,比如生成相位编码信号,进行脉冲压缩处理,包括匹配滤波。代码需要展示如何生成二相编码(比如巴克码),调制相位,以及如何通过相关运算实现压缩。 另外,用户可能对应用场景感兴趣,比如在雷达中的具体应用,所以需要结合引用[3]提到的雷达信号处理,说明相位编码如何提升分辨率和抗干扰能力。同时,考虑到用户可能想知道不同编码的优缺点,比如巴克码的自相关特性好,但长度有限,可能需要提到m序列或其他编码作为补充。 需要注意的是,用户的问题中还提到了原理和实现方法,所以回答需要结构清晰,分点讲解,先原理后实现,再应用和优缺点。同时,根据系统指令,数学公要用$...$,独立公用$$...$$,并且正确使用LaTeX语法。例如,相位编码的数学表达可能需要写成$\phi(t)$,而匹配滤波的公可能需要单独成段。 最后,生成的相关问题要围绕用户的需求展开,可能涉及性能分析、优化方法、应用场景比较,以及与其他编码的对比。确保问题能够引导用户进一步深入理解该主题。</think>### 相位编码脉冲压缩的原理与实现方法 #### 一、基本原理 相位编码脉冲压缩是一种通过离散相位调制提高雷达信号分辨率和抗干扰能力的技术。其核心是通过伪随机序列(如二相码)对发射信号进行相位编码,接收时通过匹配滤波实现信号压缩[^3][^4]。 1. **信号模型** 设基带信号为: $$ s(t) = A \cdot e^{j\phi(t)} $$ 其中$\phi(t)$为离散相位编码序列。例如,二相码取0或$\pi$,对应相位跳变。 2. **性能优势** - **高TB值**:时宽带宽积(TB)越大,压缩后主瓣越窄,距离分辨率越高 - **主副瓣比高**:例如巴克码的主副瓣比可达$N:1$($N$为码长)[^4] - **抗干扰**:伪随机序列降低了信号被截获的概率 #### 二、实现步骤(以二相编码为例) 1. **编码生成** 使用巴克码、m序列等离散相位序列。例如巴克码7位序列为$[1,1,1,-1,-1,1,-1]$,对应相位$[0,0,0,\pi,\pi,0,\pi]$[^4]。 2. **信号调制** 将相位序列映射到脉冲子码: ```matlab % 生成巴克码7相位编码信号 barker_code = [1,1,1,-1,-1,1,-1]; phase = (barker_code == -1) * pi; % 二相码相位映射 sub_pulse = exp(1j * phase); ``` 3. **脉冲压缩处理** 接收端通过匹配滤波器(相关运算)实现压缩: ```matlab received_signal = conv(transmit_signal, sub_pulse); % 模拟回波 compressed_signal = xcorr(received_signal, sub_pulse); ``` #### 三、关键参数与性能 | 参数 | 影响 | |---------------|----------------------------------------------------------------------| | 码长$N$ | 码长越长,主副瓣比越高,但带宽增大($\Delta f \propto 1/\tau$,$\tau$为子码宽度)| | 码元类型 | 巴克码自相关特性好但长度有限(最大13位),m序列可任意长度但主副瓣比低 | | 压缩比$TB$ | 决定主瓣宽度:$\Delta \tau = \tau / TB$,提高距离分辨率 | #### 四、应用场景 1. **低截获概率雷达**:伪随机相位编码降低信号被侦测概率 2. **高分辨率成像**:通过大TB值实现毫米级距离分辨率 3. **抗干扰通信**:在复杂电磁环境中保持信号完整性[^3] #### 五、优缺点对比 $$ \begin{cases} \text{优点:离散编码易实现、抗干扰强} \\ \text{缺点:多普勒敏感性高、长编码实现复杂度高} \end{cases} $$
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吾与春风皆过客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值