深度学习神经网络基本原理

本文介绍了深度学习的基本原理,包括其学习特征的能力,建立模型的过程,如前馈神经网络、卷积神经网络的结构和卷积核的作用。同时,讨论了损失函数和参数学习的重要性,并概述了线性回归、多层感知机和LeNet-5卷积网络模型的实战应用。
摘要由CSDN通过智能技术生成

一、深度学习

深度学习:顾名思义学习特征

从原始数据中提取模式的能力。机器学习就是让计算机模型学习到这些分类模型。深度学习面临的挑战是:图像的底层视觉特性和高层语义概念之间的鸿沟。例如人和狗是不一样的图像,但如果他们背景颜色都一样,视觉特征很像,但语义不同。

总的流程为:建立模型——损失函数——参数学习

step1:建立模型

前馈神经网络:可以将数据进行处理。
在这里插入图片描述
在这里插入图片描述
最后用函数来表达就是输入了特征 ( 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值