SVM深入理解:解决线性不可分类时,对特征集进行多项式、核函数转换将其转换为线性可分类问题

一、核函数

1.格式

  • K(x, y):表示样本 x 和 y,添加多项式特征得到新的样本 x’、y’,K(x, y) 就是返回新的样本经过计算得到的值;
  • 在 SVM 类型的算法 SVC() 中,K(x, y) 返回点乘:x’ . y’ 得到的值;
    在这里插入图片描述

2.多项式核函数

内部实现:

(1)对传入的样本数据点添加多项式项;
(2)新的样本数据点进行点乘,返回点乘结果;
多项式特征的基本原理:依靠升维使得原本线性不可分的数据线性可分;
升维的意义:使得原本线性不可分的数据线性可分;
例:
一维特征的样本,两种类型,分布如图,线性不可分:
在这里插入图片描述
为样本添加一个特征:x2 ,使得样本在二维平面内分布,此时样本在 x 轴升的分布位置不变;如图,可以线性可分:
在这里插入图片描述

3.优点 / 特点

  • 不需要每次都具体计算出原始样本点映射的新的无穷维度的样本点,直接使用映射后的新的样本点的点乘计算公式即可;
  • 减少计算量
  • 减少存储空间
  • 一般将原始样本变形,通常是将低维的样本数据变为高维数据,存储高维数据花费较多的存储空间;使用核函数,不用考虑原来样本改变后的样子,也不用存储变化后的结果,只需要直接使用变化的结果进行运算并返回运算结果即可;
  • 核函数的方法和思路不是 SVM 算法特有,只要可以减少计算量和存储空间,都可以设计核函数方便运算;
  • 对于比较传统的常用的机器学习算法,核函数这种技巧更多的在 SVM 算法中使用;

4.SVM 中的核函数

  • svm 类中的 SVC() 算法中包含两种核函数:
  • SVC(kernel = ‘ploy’):表示算法使用多项式核函数;
  • SVC(kernel = ‘rbf’):表示算法使用高斯核函数;
  • SVM 算法的本质就是求解目标函数的最优化问题;
    在这里插入图片描述
    求解最优化问题时,将数学模型变形:
    在这里插入图片描述

5.多项式核函数

格式:
from sklearn.svm import SVC
svc = SVC(kernel = ‘ploy’)

**思路:**设计一个函数( K(xi, xj) ),传入原始样本(x(i) 、 x(j)),返回添加了多项式特征后的新样本的计算结果(x’(i) . x’(j));
内部过程:先对 xi 、xj 添加多项式,得到:x’(i) 、 x’(j) ,再进行运算:x’(i) . x’(j) ;
x(i) 添加多项式特征后:x’(i) ;
x(j) 添加多项式特征后:x’(j) ;
x(i) . x(j) 转化为:x’(i) . x’(j) ;
其实不使用核函数也能达到同样的目的,这里核函数相当于一个技巧,更方便运算;

二、高斯核函数(RBF)

1.思想

  • 业务的目的是样本分类,采用的方法:按一定规律统一改变样本的特征数据得到新的样本,新的样本按新的特征数据能更好的分类,由于新的样本的特征数据与原始样本的特征数据呈一定规律的对应关系,因此根据新的样本的分布及分类情况,得出原始样本的分类情况。
  • 应该是试验反馈,将样本的特征数据按一定规律统一改变后,同类样本更好的凝聚在了一起;
  • 高斯核和多项式核干的事情截然不同的,如果对于样本数量少,特征多的数据集,高斯核相当于对样本降维;

高斯核的任务:找到更有利分类任务的新的空间。
方法:类似 在这里插入图片描述的映射。
高斯核本质是在衡量样本和样本之间的“相似度”,在一个刻画“相似度”的空间中,让同类样本更好的聚在一起,进而线性可分。

2.定义方式

在这里插入图片描述
(1)x、y:样本或向量;
(2)γ:超参数;高斯核函数唯一的超参数;
(3)|| x - y ||:表示向量的范数,可以理解为向量的模;
(4)表示两个向量之间的关系,结果为一个具体值;
(5)高斯核函数的定义公式就是进行点乘的计算公式;

3.功能

  • 先将原始的数据点(x, y)映射为新的样本(x’,y’);
  • 再将新的特征向量点乘(x’ . y’),返回其点乘结果;
  • 计算点积的原因:此处只针对 SVM 中的应用,在其它算法中的应用不一定需要计算点积;
    在这里插入图片描述

4.特点

  • 高斯核运行开销耗时较大,训练时间较长;
  • 一般使用场景:数据集 (m, n),m < n;
  • 一般应用领域:自然语言处理;
    自然语言处理:通常会构建非常高维的特征空间,但有时候样本数量并不多;

5.高斯函数

在这里插入图片描述

  • 正态分布就是一个高斯函数;
  • 高斯函数和高斯核函数,形式类似;

6.其它

  • 高斯核函数,也称为 RBF 核(Radial Basis Function Kernel),也称为径向基函数;
  • 高斯核函数的本质:将每一个样本点映射到一个无穷维的特征空间;
  • 无穷维:将 mn 的数据集,映射为 mm 的数据集,m 表示样本个数,n 表示原始样本特征种类,样本个数是无穷的,因此,得到的新的数据集的样本也是无穷维的;
  • 高斯核升维的本质,使得线性不可分的数据线性可分;

三、重做例子代码

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC 
iris = datasets.load_iris()
X=iris.data
y=iris.target
X=X[y<2,:2]#只取y<2的类别,也就是0 1 并且只取前两个特征 
y=y[y<2]# 只取y<2的类别 # 分别画出类别0和1的点 
plt.scatter(X[y==0,0],X[y==0,1],color='red')
plt.scatter(X[y==1,0],X[y==1,1],color='blue')
plt.show()
# 标准化 
standardScaler=StandardScaler()
standardScaler.fit(X)#计算训练数据的均值和方差 
X_standard=standardScaler.transform(X)#再用scaler中的均值和方差来转换X,使X标准化 
svc=LinearSVC(C=1e9)#线性SVM分类器 
svc.fit(X_standard,y)# 训练svm

在这里插入图片描述

def plot_decision_boundary(model, axis):
    x0,x1=np.meshgrid(
        np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)).reshape(-1,1),
        np.linspace(axis[2],axis[3],int((axis[3]-axis[2])*100)).reshape(-1,1)
    )
    X_new=np.c_[x0.ravel(),x1.ravel()]
    y_predict=model.predict(X_new)
    zz=y_predict.reshape(x0.shape)
    from matplotlib.colors import ListedColormap
    custom_cmap=ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
    plt.contourf(x0,x1,zz,linewidth=5,cmap=custom_cmap)# 绘制决策边界 
warnings.filterwarnings("ignore")
plot_decision_boundary(svc,axis=[-3,3,-3,3])# x,y轴都在-3到3之间 
# 绘制原始数据
plt.scatter(X_standard[y==0,0],X_standard[y==0,1],color='red')
plt.scatter(X_standard[y==1,0],X_standard[y==1,1],color='blue')
plt.show()

在这里插入图片描述

svc2=LinearSVC(C=0.01)
svc2.fit(X_standard,y)
plot_decision_boundary(svc2,axis=[-3,3,-3,3
  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值