数学分析 重积分(第21章)1 二重积分,格林公式,曲线积分与路线无关性,三重积分

一.二重积分
1.平面图形的面积
(1)定义:
在这里插入图片描述
(2)可求面积的充要条件:

定理21.1:平面有界图形 P P P可求面积的充要条件是:对 ∀ ε > 0 ∀ε>0 ε>0,总存在直线网 T T T,使得 S P ( T ) − s P ( T ) < ε ( 2 ) S_P(T)-s_P(T)<ε\qquad(2) SP(T)sP(T)<ε(2)
在这里插入图片描述
注:①证明方法类似于定积分中下和与上和相关性质的证明
推论:平面有界图形 P P P的面积为0的充要条件是:其外面积 I ˉ P = 0 \bar I_P=0 IˉP=0,即对 ∀ ε > 0 ∀ε>0 ε>0.存在直线网 T T T,使得 S P ( T ) < ε S_P(T)<ε SP(T)<ε或对 ∀ ε > 0 , P ∀ε>0,P ε>0,P总能被有限个面积总和小于 ε ε ε的小矩形所覆盖

(3)边界的面积:

定理21.2:平面有界图形 P P P可求面积的充要条件是: P P P的边界 K K K的面积为0
在这里插入图片描述

定理21.3:若曲线 K K K为定义在 [ a , b ] [a,b] [a,b]上的连续函数 f ( x ) f(x) f(x)的图像,则曲线 K K K的面积为0
在这里插入图片描述
在这里插入图片描述
推论1:参数方程 x = φ ( t ) , y = ψ ( t )   ( t ∈ [ α , β ] ) x=φ(t),y=ψ(t)\,(t∈[α,β]) x=φ(t),y=ψ(t)(t[α,β])所表示的光滑曲线 K K K的面积为0
在这里插入图片描述
推论2:由平面上分段光滑曲线所围成的有界闭区域是可求面积的
在这里插入图片描述

2.二重积分的定义及存在性
(1)分割,细度,积分和:
在这里插入图片描述
在这里插入图片描述
(2)二重积分的定义:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(3)二重积分的存在性:
在这里插入图片描述

定理21.4: f ( x , y ) f(x,y) f(x,y)在有界,可求面积的区域 D D D上可积的充要条件是: lim ⁡ ∣ ∣ T ∣ ∣ → 0 S ( T ) = lim ⁡ ∣ ∣ T ∣ ∣ → 0 s ( T ) \displaystyle\lim_{||T||→0}S(T)=\displaystyle\lim_{||T||→0}s(T) T0limS(T)=T0lims(T)

定理21.5: f ( x , y ) f(x,y) f(x,y)在有界,可求面积的区域 D D D上可积的充要条件是:对 ∀ ε > 0 ∀ε>0 ε>0,存在 D D D的某个分割 T T T,使得 S ( T ) − s ( T ) < ε S(T)-s(T)<ε S(T)s(T)<ε

定理21.6:有界闭区域 D D D上的连续函数必可积

定理21.7:设 f ( x , y ) f(x,y) f(x,y)在有界闭区域 D D D上有界,且其不连续点集 E E E是零面积集,则 f ( x , y ) f(x,y) f(x,y) D D D上可积
在这里插入图片描述

3.二重积分的性质:

①若 f ( x , y ) f(x,y) f(x,y)在区域 D D D上可积, k k k为常数,则 k f ( x , y ) kf(x,y) kf(x,y) D D D上也可积,且 ∬ D k f ( x , y ) d σ = k ∬ D f ( x , y ) d σ \iint_Dkf(x,y)dσ=k\iint_Df(x,y)dσ Dkf(x,y)dσ=kDf(x,y)dσ

②若 f ( x , y ) , g ( x , y ) f(x,y),g(x,y) f(x,y),g(x,y)在区域 D D D上可积,则 f ( x , y ) ± g ( x , y ) f(x,y)±g(x,y) f(x,y)±g(x,y) D D D上也可积,且 ∬ D [ f ( x , y ) ± g ( x , y ) ] d σ = ∬ D f ( x , y ) d σ ± ∬ D g ( x , y ) d σ \iint_D[f(x,y)±g(x,y)]dσ=\iint_Df(x,y)dσ±\iint_Dg(x,y)dσ D[f(x,y)±g(x,y)]dσ=Df(x,y)dσ±Dg(x,y)dσ

③若 f ( x , y ) f(x,y) f(x,y)在区域 D 1 , D 2 D_1,D_2 D1,D2上可积,且 D 1 , D 2 D_1,D_2 D1,D2无公共内点,则 f ( x , y ) f(x,y) f(x,y) D 1 ∪ D 2 D_1∪D_2 D1D2上也可积,且 ∬ D 1 ∪ D 2 f ( x , y ) d σ = ∬ D 1 f ( x , y ) d σ + ∬ D 2 f ( x , y ) d σ \iint_{D_1∪D_2}f(x,y)dσ=\iint_{D_1}f(x,y)dσ+\iint_{D_2}f(x,y)dσ D1D2f(x,y)dσ=D1f(x,y)dσ+D2f(x,y)dσ

④若 f ( x , y ) , g ( x , y ) f(x,y),g(x,y) f(x,y),g(x,y)在区域 D D D上可积,且 f ( x , y ) ≤ g ( x , y )   ( ( x , y ) ∈ D ) f(x,y)≤g(x,y)\,((x,y)∈D) f(x,y)g(x,y)((x,y)D) ∬ D f ( x , y ) d σ ≤ ∬ D g ( x , y ) d σ \iint_Df(x,y)dσ≤\iint_Dg(x,y)dσ Df(x,y)dσDg(x,y)dσ

⑤若 f ( x , y ) f(x,y) f(x,y)在区域 D D D上可积,则 ∣ f ( x , y ) ∣ |f(x,y)| f(x,y) D D D上也可积,且 ∣ ∬ D f ( x , y ) d σ ∣ ≤ ∬ D ∣ f ( x , y ) ∣ d σ |\iint_Df(x,y)dσ|≤\iint_D|f(x,y)|dσ Df(x,y)dσDf(x,y)dσ

⑥若 f ( x , y ) f(x,y) f(x,y)在区域 D D D上可积,且 m ≤ f ( x , y ) ≤ M   ( ( x , y ) ∈ D ) m≤f(x,y)≤M\,((x,y)∈D) mf(x,y)M((x,y)D) m S D ≤ ∬ D f ( x , y ) d σ ≤ M S d mS_D≤\iint_Df(x,y)dσ≤MS_d mSDDf(x,y)dσMSd这里 S D S_D SD是积分区域 D D D的面积

⑦(中值定理)若 f ( x , y ) f(x,y) f(x,y)在有界闭区域 D D D上连续,则 ∃ ( ξ , η ) S D ∃(\xi,η)S_D (ξ,η)SD这里 S D S_D SD是积分区域 D D D的面积
在这里插入图片描述

4.直角坐标系下二重积分的计算
(1)矩形区域上二重积分的计算:

定理21.8:设 f ( x , y ) f(x,y) f(x,y)在矩形区域 D = [ a , b ] × [ c , d ] D=[a,b]×[c,d] D=[a,b]×[c,d]上可积,且对 ∀ x ∈ [ a , b ] ∀x∈[a,b] x[a,b],积分 ∫ c d f ( x , y ) d y \int_c^df(x,y)dy cdf(x,y)dy存在,则累次积分 ∫ a b d x ∫ c d f ( x , y ) d y \int_a^bdx\int_c^df(x,y)dy abdxcdf(x,y)dy也存在,且 ∬ D f ( x , y ) d σ = ∫ a b d x ∫ c d f ( x , y ) d y ( 1 ) \iint_Df(x,y)dσ=\int_a^bdx\int_c^df(x,y)dy\qquad(1) Df(x,y)dσ=abdxcdf(x,y)dy(1)
在这里插入图片描述
在这里插入图片描述

定理21.9:设 f ( x , y ) f(x,y) f(x,y)在矩形区域 D = [ a , b ] × [ c , d ] D=[a,b]×[c,d] D=[a,b]×[c,d]上可积,且对 ∀ y ∈ [ c , d ] ∀y∈[c,d] y[c,d],积分 ∫ a b f ( x , y ) d x \int_a^bf(x,y)dx abf(x,y)dx存在,则累次积分 ∫ c d d y ∫ a b f ( x , y ) d x \int_c^ddy\int_a^bf(x,y)dx cddyabf(x,y)dx也存在,且 ∬ D f ( x , y ) d σ = ∫ c d d y ∫ a b f ( x , y ) d x \iint_Df(x,y)dσ=\int_c^ddy\int_a^bf(x,y)dx Df(x,y)dσ=cddyabf(x,y)dx

特别地,当 f ( x , y ) f(x,y) f(x,y)在矩形区域 D = [ a , b ] × [ c , d ] D=[a,b]×[c,d] D=[a,b]×[c,d]上连续时,有 ∬ D f ( x , y ) d σ = ∫ a b d x ∫ c d f ( x , y ) d y = ∫ c d d y ∫ a b f ( x , y ) d x \iint_Df(x,y)dσ=\int_a^bdx\int_c^df(x,y)dy=\int_c^ddy\int_a^bf(x,y)dx Df(x,y)dσ=abdxcdf(x,y)dy=cddyabf(x,y)dx

(2)一般区域上二重积分的计算:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

定理21.10:若 f ( x , y ) f(x,y) f(x,y)在如(4)式所示的 x x x型区域 D D D上连续,其中 y 1 ( x ) , y 2 ( x ) y_1(x),y_2(x) y1(x),y2(x) [ a , b ] [a,b] [a,b]上连续,则 ∬ D f ( x , y ) d σ = ∫ a b d x ∫ y 1 ( x ) y 2 ( x ) f ( x , y ) d y \iint_Df(x,y)dσ=\int_a^bdx\int_{y_1(x)}^{y_2(x)}f(x,y)dy Df(x,y)dσ=abdxy1(x)y2(x)f(x,y)dy即二重积分可化为先对 y y y后对 x x x的累次积分
在这里插入图片描述
在这里插入图片描述
同理,若 D D D为如(4)式所示的 y y y型区域,其中 x 1 ( y ) , x 2 ( y ) x_1(y),x_2(y) x1(y),x2(y) [ c , d ] [c,d] [c,d]上连续,则 ∬ D f ( x , y ) d σ = ∫ c d d y ∫ x 1 ( y ) x 2 ( y ) f ( x , y ) d x \iint_Df(x,y)dσ=\int_c^ddy\int_{x_1(y)}^{x_2(y)}f(x,y)dx Df(x,y)dσ=cddyx1(y)x2(y)f(x,y)dx即二重积分可化为先对 x x x后对 y y y的累次积分

5.变量变换
(1)变量变换公式:
在这里插入图片描述

引理:设变换 T : x = x ( u , v ) , y = y ( u , v ) T:x=x(u,v),y=y(u,v) T:x=x(u,v),y=y(u,v) u v uv uv平面上由按段光滑的封闭曲线所围成的闭区域 Δ Δ Δ一对一地映成 x y xy xy平面上的闭区域 D D D,函数 x ( u , v ) , y ( u , v ) x(u,v),y(u,v) x(u,v),y(u,v) Δ Δ Δ内分别具有1阶连续偏导数且它们的函数行列式 J ( u , v ) = ∂ ( x , y ) ∂ ( u , v ) ≠ 0   ( ( u , v ) ∈ Δ ) J(u,v)=\frac{\partial(x,y)}{\partial(u,v)}≠0\,((u,v)∈Δ) J(u,v)=(u,v)(x,y)=0((u,v)Δ)则区域 D D D的面积 μ ( D ) = ∬ Δ ∣ J ( u , v ) ∣ d u d v ( 5 ) μ(D)=\iint_Δ|J(u,v)|dudv\qquad(5) μ(D)=ΔJ(u,v)dudv(5)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
定理21.13:设 f ( x , y ) f(x,y) f(x,y)在有界闭区域 D D D上可积,设变换 T : x = x ( u , v ) , y = y ( u , v ) T:x=x(u,v),y=y(u,v) T:x=x(u,v),y=y(u,v) u v uv uv平面上由按段光滑的封闭曲线所围成的闭区域 Δ Δ Δ一对一地映成 x y xy xy平面上的闭区域 D D D,函数 x ( u , v ) , y ( u , v ) x(u,v),y(u,v) x(u,v),y(u,v) Δ Δ Δ内分别具有1阶连续偏导数且它们的函数行列式 J ( u , v ) = ∂ ( x , y ) ∂ ( u , v ) ≠ 0   ( ( u , v ) ∈ Δ ) J(u,v)=\frac{\partial(x,y)}{\partial(u,v)}≠0\,((u,v)∈Δ) J(u,v)=(u,v)(x,y)=0((u,v)Δ) ∬ D f ( x , y ) d x d y = ∬ Δ f ( x ( u , v ) , y ( u , v ) ) ∣ J ( u , v ) ∣ d u d v \iint_Df(x,y)dxdy=\iint_Δf(x(u,v),y(u,v))|J(u,v)|dudv Df(x,y)dxdy=Δf(x(u,v),y(u,v))J(u,v)dudv
在这里插入图片描述

(2)极坐标下二重积分的计算:
在这里插入图片描述
在这里插入图片描述

定理21.14:设 f ( x , y ) f(x,y) f(x,y)满足定理21.13的条件,且在极坐标变换(8)下, x y xy xy平面上的有界闭区域 D D D r θ rθ rθ平面上的区域 Δ Δ Δ对应,则成立 ∬ D f ( x , y ) d x d y = ∬ Δ f ( r c o s   θ , r s i n   θ ) r d r d θ ( 9 ) \iint_Df(x,y)dxdy=\iint_Δf(rcos\,θ,rsin\,θ)rdrdθ\qquad(9) Df(x,y)dxdy=Δf(rcosθ,rsinθ)rdrdθ(9)
在这里插入图片描述
在这里插入图片描述

将二重积分在极坐标系下化为累次积分:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二.格林公式·曲线积分与路线无关性
1.二重积分与第二型曲线积分间的联系
在这里插入图片描述
(1)边界曲线的正方向:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
(2)格林公式(Green Formula):

定理21.11:若函数 P ( x , y ) , Q ( x , y ) P(x,y),Q(x,y) P(x,y),Q(x,y)在闭区域 D D D上连续,且有连续的1阶偏导数,则有 ∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d σ = ∮ L P d x + Q d y ( 1 ) \iint_D(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y})dσ=\oint_LPdx+Qdy\qquad(1) D(xQyP)dσ=LPdx+Qdy(1)这里 L L L为区域 D D D的边界曲线,分段光滑,并取正方向;公式(1)称为格林公式
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
格林公式揭示了沿闭曲线的积分和二重积分之间的联系,为便于记忆,格林公式(1)也可写成下述形式 ∬ D ∣ ∂ ∂ x ∂ ∂ y P Q ∣ d σ = ∮ L P d x + Q d y \iint_D\left|\begin{matrix}\frac{\partial}{\partial x}&\frac{\partial}{\partial y}\\P&Q\end{matrix}\right|dσ=\oint_LPdx+Qdy DxPyQdσ=LPdx+Qdy应用格林公式可简化某些曲线积分的计算

2.曲线积分与路线的无关性
(1)单连通与复连通:
在这里插入图片描述
在这里插入图片描述
(2)曲线积分在什么条件下和路径无关:

定理21.12:设 D D D是单连通闭区域,若函数 P ( x , y ) , Q ( x , y ) P(x,y),Q(x,y) P(x,y),Q(x,y) D D D内连续,且具有1阶连续偏导数,则以下4个条件等价:
①沿 D D D内任一按段光滑封闭曲线 L L L,有 ∮ L P d x + Q d y \oint_LPdx+Qdy LPdx+Qdy
②对 D D D内任一按段光滑曲线 L L L,曲线积分 ∫ L P d x + Q d y \int_LPdx+Qdy LPdx+Qdy与路线无关,只与 L L L的起点与终点有关
P d x + Q d y Pdx+Qdy Pdx+Qdy D D D内某函数 u ( x , y ) u(x,y) u(x,y)的全微分,即在 D D D内有 d u = P d x + Q d y du=Pdx+Qdy du=Pdx+Qdy
④在 D D D内处处有下式成立 ∂ P ∂ y = ∂ Q ∂ x \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} yP=xQ
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

关于条件[ D D D是单连通区域]:
在这里插入图片描述

(3) P d x + Q d y Pdx+Qdy Pdx+Qdy的原函数:
在这里插入图片描述
在这里插入图片描述
三.三重积分
1.概念与性质:
在这里插入图片描述

注:①可仿照定义平面图形可求面积的方法建立空间立体可求体积的概念,今后总是假定 V V V的边界由光滑曲面组成,以保证积分区域是可求体积的
在这里插入图片描述

2.将三重积分化为累次积分
(1)先一后二法:

定理21.15:若函数 f ( x , y , z ) f(x,y,z) f(x,y,z)在长方体 V = [ a , b ] × [ c , d ] × [ e , h ] V=[a,b]×[c,d]×[e,h] V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对 ∀ ( x , y ) ∈ D = [ a , b ] × [ c , d ] , g ( x , y ) = ∫ e h f ( x , y , z ) d z ∀(x,y)∈D=[a,b]×[c,d],g(x,y)=\int_e^hf(x,y,z)dz (x,y)D=[a,b]×[c,d],g(x,y)=ehf(x,y,z)dz都存在,则积分 ∬ D g ( x , y ) d x d y \iint_Dg(x,y)dxdy Dg(x,y)dxdy也存在,且 ∭ V f ( x , y , z ) d x d y d z = ∬ D d x d y ∫ e h f ( x , y , z ) d z \iiint_Vf(x,y,z)dxdydz=\iint_Ddxdy\int_e^hf(x,y,z)dz Vf(x,y,z)dxdydz=Ddxdyehf(x,y,z)dz
在这里插入图片描述
推论1:若 V = { ( x , y , z )   ∣   ( x , y ) ∈ D , z 1 ( x , y ) ≤ z ≤ z 2 ( x , y ) } ⊂ [ a , b ] × [ c , d ] × [ e , h ] V=\{(x,y,z)\,|\,(x,y)∈D,z_1(x,y)≤z≤z_2(x,y)\}\sub[a,b]×[c,d]×[e,h] V={(x,y,z)(x,y)D,z1(x,y)zz2(x,y)}[a,b]×[c,d]×[e,h],其中 D D D V V V O x y Oxy Oxy平面上的投影, z 1 ( x , y ) , z 2 ( x , y ) z_1(x,y),z_2(x,y) z1(x,y),z2(x,y) D D D上的连续函数,函数 f ( x , y , z ) f(x,y,z) f(x,y,z) V V V上的三重积分存在,且对 ∀ ( x , y ) ∈ D ∀(x,y)∈D (x,y)D, G ( x , y ) = ∫ z 1 ( x , y ) z 2 ( x , y ) f ( x , y , z ) d z G(x,y)=\int_{z_1(x,y)}^{z_2(x,y)}f(x,y,z)dz G(x,y)=z1(x,y)z2(x,y)f(x,y,z)dz也存在,则积分 ∬ D G ( x , y ) d x d y \iint_DG(x,y)dxdy DG(x,y)dxdy存在,且 ∭ V f ( x , y , z ) d x d y d z = ∬ D G ( x , y ) d x d y      = ∬ D d x d y ∫ z 1 ( x , y ) z 2 ( x , y ) f ( x , y , z ) d z ( 3 ) \iiint_Vf(x,y,z)dxdydz=\iint_DG(x,y)dxdy\\\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\:\,\,\,=\iint_Ddxdy\int_{z_1(x,y)}^{z_2(x,y)}f(x,y,z)dz\qquad(3) Vf(x,y,z)dxdydz=DG(x,y)dxdy=Ddxdyz1(x,y)z2(x,y)f(x,y,z)dz(3)(见图21-21)
在这里插入图片描述
在这里插入图片描述

(2)先二后一法:

定理21.16:若函数 f ( x , y , z ) f(x,y,z) f(x,y,z)在长方体 V = [ a , b ] × [ c , d ] × [ e , h ] V=[a,b]×[c,d]×[e,h] V=[a,b]×[c,d]×[e,h]上的三重积分存在,且对 ∀ z ∈ [ e , h ] ∀z∈[e,h] z[e,h],二重积分 I ( z ) = ∬ D f ( x , y , z ) d x d y I(z)=\iint_Df(x,y,z)dxdy I(z)=Df(x,y,z)dxdy存在,其中 D = [ a , b ] × [ c , d ] D=[a,b]×[c,d] D=[a,b]×[c,d],则积分 ∫ e h d z ∬ D f ( x , y , z ) d x d y \int_e^hdz\iint_Df(x,y,z)dxdy ehdzDf(x,y,z)dxdy也存在,且 ∭ V f ( x , y , z ) d x d y d z = ∫ e h d z ∬ D f ( x , y , z ) d x d y \iiint_Vf(x,y,z)dxdydz=\int_e^hdz\iint_Df(x,y,z)dxdy Vf(x,y,z)dxdydz=ehdzDf(x,y,z)dxdy
推论1:若 V ⊂ [ a , b ] × [ c , d ] × [ e , h ] V\sub[a,b]×[c,d]×[e,h] V[a,b]×[c,d]×[e,h],函数 f ( x , y , z ) f(x,y,z) f(x,y,z) V V V上的三重积分存在,且对 ∀ z ∈ [ e , h ] ∀z∈[e,h] z[e,h],二重积分 φ ( z ) = ∬ D z f ( x , y , z ) d x d y φ(z)=\iint_{D_z}f(x,y,z)dxdy φ(z)=Dzf(x,y,z)dxdy存在,其中 D z D_z Dz是截面 { ( x , y )   ∣   ( x , y , z ) ∈ V } \{(x,y)\,|\,(x,y,z)∈V\} {(x,y)(x,y,z)V},则积分 ∫ e h φ ( z ) d z \int_e^hφ(z)dz ehφ(z)dz也存在,且 ∭ V f ( x , y , z ) d x d y d z = ∫ e h φ ( z ) d z = ∫ e h d z ∬ D z f ( x , y , z ) d x d y \iiint_Vf(x,y,z)dxdydz=\int_e^hφ(z)dz=\int_e^hdz\iint_{D_z}f(x,y,z)dxdy Vf(x,y,z)dxdydz=ehφ(z)dz=ehdzDzf(x,y,z)dxdy(见图21-33)
在这里插入图片描述

3.三重积分换元法
在这里插入图片描述
在这里插入图片描述
(1)柱面坐标变换:
在这里插入图片描述
在这里插入图片描述
(2)球坐标变换:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 6
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值