一.结式
1.概念:
2.结式与公共复根
(1)多项式存在公共复根的判定:
定理1:设 f ( x ) = a 0 x n + a 1 x n − 1 + . . . + a n g ( x ) = b 0 x m + b 1 x m − 1 + . . . + b m f(x)=a_0x^n+a_1x^{n-1}+...+a_n\\g(x)=b_0x^m+b_1x^{m-1}+...+b_m f(x)=a0xn+a1xn−1+...+ang(x)=b0xm+b1xm−1+...+bm是 K [ x ] K[x] K[x]中2个多项式,其中 n , m > 0 n,m>0 n,m>0,则 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)的结式 R e s ( f , g ) = 0 Res(f,g)=0 Res(f,g)=0的充要条件是 a 0 = b 0 = 0 a_0=b_0=0 a0=b0=0或 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)有公共复根
(2)求多项式的公共复根:
(3)通过多项式的复根求结式:
定理2:设 f ( x ) = a 0 x n + a 1 x n − 1 + . . . + a n ( a 0 ≠ 0 ) g ( x ) = b 0 x m + b 1 x m − 1 + . . . + b m ( b 0 ≠ 0 ) f(x)=a_0x^n+a_1x^{n-1}+...+a_n\,(a_0≠0)\\g(x)=b_0x^m+b_1x^{m-1}+...+b_m\,(b_0≠0) f(x)=a0xn+a1xn−1+...+an(a0=0)g(x)=b0xm+b1xm−1+...+bm(b0=0)再设 f ( x ) f(x) f(x)的复根为 c 1 , c 2 . . . c n , g ( x ) c_1,c_2...c_n,g(x) c1,c2...cn,g(x)的复根为 d 1 , d 2 . . . d m d_1,d_2...d_m d1,d2...dm,则 R e s ( f , g ) = a 0 m ∏ i = 1 n g ( c i ) = ( − 1 ) m n b 0 n ∏ j = 1 m f ( d j ) Res(f,g)=a_0^m\displaystyle\prod_{i=1}^ng(c_i)=(-1)^{mn}b_0^n\displaystyle\prod_{j=1}^mf(d_j) Res(f,g)=a0mi=1∏ng(ci)=(−1)mnb0nj=1∏mf(dj)
3.结式与判别式:
定理3:设 f ( x ) f(x) f(x)是数域 K K K上 n n n次多项式,首项系数为 a 0 a_0 a0,则 D ( f ) = ( − 1 ) n ( n − 1 ) 2 a 0 − 1 R e s ( f , f ′ ) D(f)=(-1)^{\frac{n(n-1)}{2}}a_0^{-1}Res(f,f') D(f)=(−1)2n(n−1)a0−1Res(f,f′)
二.域与域上的一元多项式环
1.分式域
(1)分式:
(2)域与分式域:
命题1:域 F F F中没有非平凡的零因子,从而域一定是整环
(3)分式的基本性质:
(4)分式的次数:
(5)既约分式:
2.模
p
p
p剩余类域与模
m
m
m剩余类环
(1)同余关系:
命题2:若 a ≡ b ( m o d 7 ) , c ≡ d ( m o d 7 ) a\equiv b(mod\,7),c\equiv d(mod\,7) a≡b(mod7),c≡d(mod7),则 a + c ≡ b + d ( m o d 7 ) , a c ≡ b d ( m o d 7 ) ( 16 ) a+c\equiv b+d(mod\,7),ac\equiv bd(mod\,7)\qquad(16) a+c≡b+d(mod7),ac≡bd(mod7)(16)
命题2’:若 a ≡ b ( m o d m ) , c ≡ d ( m o d m ) a\equiv b(mod\,m),c\equiv d(mod\,m) a≡b(modm),c≡d(modm),则 a + c ≡ b + d ( m o d m ) , a c ≡ b d ( m o d m ) ( 21 ) a+c\equiv b+d(mod\,m),ac\equiv bd(mod\,m)\qquad(21) a+c≡b+d(modm),ac≡bd(modm)(21)
(2)剩余类:
(3)剩余类环与剩余类域:
定理4:若 p p p是素数,则 Z p Z_p Zp是1个域
3.域的特征
(1)域的特征的概念:
定理5:设 F F F是1个域,其单位元为 e e e,则或者对 ∀ n ∈ N + ∀n∈N_+ ∀n∈N+都有 n e ≠ 0 ne≠0 ne=0,或者存在1个素数 p p p,使得 p e = 0 pe=0 pe=0,从而对 ∀ l ∀l ∀l满足 0 < l < p 0<l<p 0<l<p都有 l e ≠ 0 le≠0 le=0
(2)域的特征的性质:
命题3:设域 F F F的特征为素数 p p p,则 n e = 0 ⇔ p ∣ n ne=0⇔p\,|\,n ne=0⇔p∣n
命题4:设域 F F F的特征为素数 p p p,任取 a ∈ F ∗ ( F ∗ a∈F^*(F^* a∈F∗(F∗表示 F F F中所有非零元组成的集合),则 n a = 0 ⇔ p ∣ n na=0⇔p\,|\,n na=0⇔p∣n
4.域
F
F
F上的一元多项式环
(1)概念:
注:目前为止,仅有该定理需要用到"域含有无穷多个元素"
(2)有理数域上整系数多项式不可约的判定:
命题5:设 f ( x ) = a n x n + . . . + a 1 x + a 0 f(x)=a_nx^n+...+a_1x+a_0 f(x)=anxn+...+a1x+a0是1个整系数多项式, p p p是1个素数, p ∤ a 0 p\not|\,a_0 p∣a0;把 f ( x ) f(x) f(x)的各项系数模 p p p变成 Z p Z_p Zp的元素,得到 Z p Z_p Zp上的1个多项式,记作 f ~ ( x ) \tilde{f}(x) f~(x),即 f ~ ( x ) = a n ˉ x n + a n − 1 ˉ x n − 1 + . . . + a 1 ˉ x + a 0 ˉ ( 29 ) \tilde{f}(x)=\bar{a_n}x^n+\bar{a_{n-1}}x^{n-1}+...+\bar{a_1}x+\bar{a_0}\qquad(29) f~(x)=anˉxn+an−1ˉxn−1+...+a1ˉx+a0ˉ(29)如果 f ~ ( x ) \tilde{f}(x) f~(x)在 Z p Z_p Zp上不可约,那么 f ( x ) f(x) f(x)在 Q Q Q上不可约
5.中国剩余定理:
中国剩余定理:设 m 1 , m 2 . . . m s m_1,m_2...m_s m1,m2...ms是两两互素的正整数, b 1 , b 2 . . . b s b_1,b_2...b_s b1,b2...bs是任意给定的 s s s个整数,则同余方程组 { x ≡ b 1 ( m o d m 1 ) x ≡ b 2 ( m o d m 2 ) . . . x ≡ b s ( m o d m s ) ( 32 ) \begin{cases}x\equiv b_1(mod\,m_1)\\x\equiv b_2(mod\,m_2)\\\qquad\quad...\\x\equiv b_s(mod\,m_s)\end{cases}\qquad(32) ⎩⎪⎪⎪⎨⎪⎪⎪⎧x≡b1(modm1)x≡b2(modm2)...x≡bs(modms)(32)在 Z Z Z中必有解,并且如果 c , d c,d c,d是2个解,那么 c ≡ d ( m o d m 1 m 2 . . . m s ) ( 33 ) c\equiv d(mod\,m_1m_2...m_s)\qquad(33) c≡d(modm1m2...ms)(33)