高等代数 线性映射(第9章)1 概念,运算,核与象

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
一.线性映射及其运算(9.1)
1.线性映射的定义与性质
(1)线性映射的定义:
在这里插入图片描述
(2)一些线性映射的例子:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注:例7中的 k k k不一定是数,但习惯上仍然称该线性变换为数乘变换

命题1:对任何线性映射 f ∈ H o m ( V , U ) f∈Hom(V,U) fHom(V,U)和恒等变换 I V ∈ H o m ( V , V ) , I U ∈ H o m ( U , U ) ℐ_V∈Hom(V,V),ℐ_U∈Hom(U,U) IVHom(V,V),IUHom(U,U),有 f I V = I U f = f fℐ_V=ℐ_Uf=f fIV=IUf=f
在这里插入图片描述

(3)线性映射的性质:

由于线性映射只比同构映射少了双射这个条件,因此只要某个同构映射的性质的证明不需要用到单射/满射的条件,那么线性映射就也具有该性质

性质1: Ꭿ ( 0 ) = 0 ′ Ꭿ(0)=0' (0)=0,其中 0 ′ 0' 0 V ′ V' V的零向量

性质2:对 ∀ α ∈ V , Ꭿ ( − α ) = − Ꭿ ( α ) ∀α∈V,Ꭿ(-α)=-Ꭿ(α) αV,(α)=(α)

性质3: Ꭿ ( k 1 α 1 + . . . + k s α s ) = k 1 Ꭿ ( α 1 ) + . . . + k s Ꭿ ( α s ) ( 3 ) Ꭿ(k_1α_1+...+k_sα_s)=k_1Ꭿ(α_1)+...+k_sᎯ(α_s)\qquad(3) (k1α1+...+ksαs)=k1(α1)+...+ks(αs)(3)

性质4: Ꭿ Ꭿ V V V中线性相关的向量组 α 1 , α 2 . . . α s α_1,α_2...α_s α1,α2...αs映成 V ′ V' V中线性相关的向量组 Ꭿ ( α 1 ) , Ꭿ ( α 2 ) . . . Ꭿ ( α s ) Ꭿ(α_1),Ꭿ(α_2)...Ꭿ(α_s) (α1),(α2)...(αs)
注意: Ꭿ Ꭿ 有可能把 V V V中线性无关的向量组映成 V ′ V' V中线性相关的向量组

性质5:如果 V V V是有限维的,且 α 1 , α 2 . . . α n α_1,α_2...α_n α1,α2...αn V V V的1个基,那么对于 V V V中任一向量 α = a 1 α 1 + a 2 α 2 + . . . + a n α n α=a_1α_1+a_2α_2+...+a_nα_n α=a1α1+a2α2+...+anαn,有 Ꭿ ( α ) = a 1 Ꭿ ( α 1 ) + a 2 Ꭿ ( α 2 ) + . . . + a n Ꭿ ( α n ) ( 4 ) Ꭿ(α)=a_1Ꭿ(α_1)+a_2Ꭿ(α_2)+...+a_nᎯ(α_n)\qquad(4) (α)=a1(α1)+a2(α2)+...+an(αn)(4)
在这里插入图片描述
在这里插入图片描述

性质6: σ σ σ V V V V ′ V' V的1个同构映射当且仅当 Ꭿ Ꭿ V V V V ′ V' V的1个可逆的线性映射

2.线性映射的存在性:

定理1:设 V , V ′ V,V' V,V都是域 F F F上的线性空间,且 V V V是有限维的;在 V V V中取1个基 α 1 , α 2 . . . α n α_1,α_2...α_n α1,α2...αn,在 V ′ V' V中任意取 n n n个向量 γ 1 . . . γ n γ_1...γ_n γ1...γn(其中可以有相同的),令 Ꭿ : V → V ′ a = ∑ i = 1 n a i α i ↦ ∑ i = 1 n a i γ i ( 6 ) Ꭿ:\qquad\qquad\qquad V→V'\qquad\qquad\qquad\\ \quad a=\displaystyle\sum_{i=1}^n{a_iα_i}↦\displaystyle\sum_{i=1}^n{a_iγ_i}\qquad(6) :VVa=i=1naiαii=1naiγi(6)
在这里插入图片描述

3.投影
(1)投影:
在这里插入图片描述

定理2:设 V V V是域 F F F上的1个线性空间, U , W U,W U,W V V V的2个子空间,且 V = U ⊕ W ( 7 ) V=U\oplus W\qquad(7) V=UW(7)任取 α ∈ V α∈V αV,设 α = α 1 + α 2   ( α 1 ∈ U , α 2 ∈ W ) α=α_1+α_2\,(α_1∈U,α_2∈W) α=α1+α2(α1U,α2W),令 P U : V → V     α ↦ α 1 ( 8 ) ℙ_U:\qquad\qquad V→V\\ \qquad\qquad\qquad\qquad\quad\:\:\: α↦α_1\qquad(8) PU:VVαα1(8) P U ℙ_U PU V V V上的1个线性变换,称 P U ℙ_U PU是平行于 W W W U U U上的投影, P U ℙ_U PU满足:$ P U ( α ) = { α 当 α ∈ U 0 当 α ∈ W ( 9 ) ℙ_U(α)=\begin{cases}α\qquad当α∈U\\0\qquad当α∈W\end{cases}\qquad(9) PU(α)={ααU0αW(9)满足(9)式的 V V V上的线性变换是唯一的
在这里插入图片描述
类似地,定义 P W ( α ) = α 2 ℙ_W(α)=α_2 PW(α)=α2,则 P W ℙ_W PW也是 V V V上的1个线性变换,称为平行于 U U U W W W上的投影
投影是很重要的1类线性变换

投影的性质: P U 2 = P U , P W 2 = P W , P U P W = P W P U = 0 ( 10 ) ℙ_U^2=ℙ_U,ℙ_W^2=ℙ_W,ℙ_Uℙ_W=ℙ_Wℙ_U=0\qquad(10) PU2=PU,PW2=PW,PUPW=PWPU=0(10)
在这里插入图片描述
在这里插入图片描述

(2)幂等变换:
在这里插入图片描述
(3)正交:
在这里插入图片描述
4.线性映射的运算
在这里插入图片描述
(1)线性映射的乘法:

也成为线性映射的合成复合
在这里插入图片描述
即:设 Ꭿ ∈ H o m ( V , U ) , B ∈ H o m ( U . W ) Ꭿ∈Hom(V,U),ℬ∈Hom(U.W) Hom(V,U),BHom(U.W),则 ( B Ꭿ ) ( a ) = B ( Ꭿ ( a ) )   ( a ∈ V ) (ℬᎯ)(a)=ℬ(Ꭿ(a))\,(a∈V) (B)(a)=B((a))(aV),称 B Ꭿ ℬᎯ B B ℬ B Ꭿ Ꭿ 复合合成乘法
在这里插入图片描述

(2)线性映射的逆映射:
在这里插入图片描述

定理3:映射 f : A → B f:A→B f:AB可逆的充要条件是: f f f是双射
在这里插入图片描述
推论:线性映射 Ꭿ ∈ H o m ( V , V ′ ) Ꭿ∈Hom(V,V') Hom(V,V)可逆的充要条件是: Ꭿ Ꭿ 是同构映射;从而 A − 1 ∈ H o m ( V ′ , V ) A^{-1}∈Hom(V',V) A1Hom(V,V)是同构映射

(3)线性映射的线性运算:
在这里插入图片描述
在这里插入图片描述
(4)线性映射的幂:
在这里插入图片描述
5.线性映射的整体结构
(1)代数:
在这里插入图片描述

注: H o m ( V , V ) Hom(V,V) Hom(V,V)中的单位元是恒等变换 I ℐ I

在这里插入图片描述
(2)线性映射的多项式:
在这里插入图片描述
(3)投影的性质:

命题2:设 U , W U,W U,W是域 F F F上线性空间 V V V的2个子空间,且 V = U ⊕ W V=U\oplus W V=UW,则平行于 W W W U U U上的投影 P U ℙ_U PU与平行于 U U U W W W上的投影 P W ℙ_W PW是正交的幂等变换,且它们的和等于恒等变换
在这里插入图片描述
在这里插入图片描述
注:前半部分的证明参见 一.3.(1) 部分

命题3:设 V V V是域 F F F上的线性空间, Ꭿ , B Ꭿ,ℬ ,B V V V上正交的幂等变换,且 Ꭿ + B = I Ꭿ+ℬ=ℐ +B=I,则 V = I m   Ꭿ ⊕ I m   B V=Im\,Ꭿ\oplus Im\,ℬ V=ImImB,且 Ꭿ Ꭿ 是平行于 I m   B Im\,ℬ ImB I m   Ꭿ Im\,Ꭿ Im上的投影, B ℬ B是平行于 I m   Ꭿ Im\,Ꭿ Im I m   B Im\,ℬ ImB上的投影
在这里插入图片描述

命题2和命题3结合在一起,利用线性变换的运算刻画了投影的特征性质

(4)镜面反射与对合变换:
在这里插入图片描述
在这里插入图片描述
(5)平移与幂零变换:
在这里插入图片描述
在这里插入图片描述
二.线性映射的核与象(9.2)
1.线性映射的核与象
(1)概念:
在这里插入图片描述
(2)性质:

命题4:设 Ꭿ Ꭿ 是域 F F F上线性空间 V V V V ′ V' V的1个线性映射,则 K e r   Ꭿ Ker\,Ꭿ Ker V V V的1个子空间, I m   Ꭿ Im\,Ꭿ Im V ′ V' V的1个子空间
在这里插入图片描述

(3)利用核与象判断 Ꭿ Ꭿ 的性质:

命题5:设 Ꭿ Ꭿ 是域 F F F上线性空间 V V V V ′ V' V的1个线性映射,则
Ꭿ Ꭿ 是单射当且仅当 K e r   Ꭿ = 0 Ker\,Ꭿ=0 Ker=0
Ꭿ Ꭿ 是满射当且仅当 I m   Ꭿ = V ′ Im\,Ꭿ=V' Im=V
在这里插入图片描述

2.核与象的关系
在这里插入图片描述
(1)结构关系:

定理4:设 Ꭿ Ꭿ 是域 F F F上线性空间 V V V V ′ V' V的1个线性映射,令 σ : V / K e r   Ꭿ → I m   Ꭿ α + K e r   Ꭿ → Ꭿ α σ:\qquad V/Ker\,Ꭿ→Im\,Ꭿ\\\qquadα+Ker\,Ꭿ→Ꭿα σ:V/KerImα+Kerα σ σ σ V / K e r   Ꭿ V/Ker\,Ꭿ V/Ker I m   Ꭿ Im\,Ꭿ Im的1个同构映射,从而 V / K e r   Ꭿ ≅ I m   Ꭿ ( 2 ) V/Ker\,Ꭿ\cong Im\,Ꭿ\qquad(2) V/KerIm(2)
在这里插入图片描述

(2)维数公式:

定理5:设 V , V ′ V,V' V,V都是域 F F F上的线性空间,且 V V V是有限维的,设 Ꭿ Ꭿ V V V V ′ V' V的1个线性映射,则 K e r   Ꭿ , I m   Ꭿ Ker\,Ꭿ,Im\,Ꭿ Ker,Im都是有限维的,且 d i m ( K e r   Ꭿ ) + d i m ( I m   Ꭿ ) = d i m ( V ) ( 3 ) dim(Ker\,Ꭿ)+dim(Im\,Ꭿ)=dim(V)\qquad(3) dim(Ker)+dim(Im)=dim(V)(3)
在这里插入图片描述
V V V是有限维的线性空间时, V V V V ′ V' V的线性映射 Ꭿ Ꭿ 的核的维数也称为 Ꭿ Ꭿ 零度; Ꭿ Ꭿ 的象 I m   Ꭿ Im\,Ꭿ Im的维数称为 Ꭿ Ꭿ ,记作 r a n k ( Ꭿ ) rank(Ꭿ) rank()
在这里插入图片描述

(3)线性映射的维数公式的一些应用:
在这里插入图片描述

定理6:设 V , V ′ V,V' V,V都是域 F F F上的 n n n维线性空间,且 Ꭿ Ꭿ V V V V ′ V' V的1个线性映射,则 Ꭿ Ꭿ 是单射当且仅当 Ꭿ Ꭿ 是满射
在这里插入图片描述
推论1:设 Ꭿ Ꭿ 是域 F F F上有限维线性空间 V V V上的1个线性变换,则 Ꭿ Ꭿ 是单射当且仅当 Ꭿ Ꭿ 是满射
在这里插入图片描述

通过通过线性映射的维数公式证明齐次线性方程组的解空间的维数公式:
在这里插入图片描述

3.通过核与象研究线性空间的结构
(1)将线性空间分解成核与象:
在这里插入图片描述

命题6:设 Ꭿ Ꭿ 是域 F F F上线性空间 V V V上的1个线性变换,如果 Ꭿ Ꭿ V V V上的幂等变换,那么 V = I m   Ꭿ   ⊕   K e r   Ꭿ ( 12 ) V=Im\,Ꭿ\,\oplus\,Ker\,Ꭿ\qquad(12) V=ImKer(12)
在这里插入图片描述

推论1:设 V = U ⊕ W V=U\oplus W V=UW,用 P U P_U PU表示平行于 W W W U U U上的投影,则 U = I m   P U , W = K e r   P U U=Im\,P_U,W=Ker\,P_U U=ImPU,W=KerPU
在这里插入图片描述
在这里插入图片描述

推论2:设 V V V是域 F F F上的线性空间,则 V V V的任一子空间 U U U是平行于 U U U的1个补空间在 U U U上的投影 P U P_U PU的象
在这里插入图片描述

推论3:设 V V V是域 F F F上的线性空间,则 V V V的任一子空间 W W W是平行于 W W W W W W的1个补空间上的投影的核
在这里插入图片描述

(2)余核:
在这里插入图片描述

命题7:设 Ꭿ Ꭿ 是域 F F F上线性空间 V V V V ′ V' V的1个线性映射,则 Ꭿ Ꭿ 是满射当且仅当 C o k e r   Ꭿ = 0 Coker\,Ꭿ=0 Coker=0
在这里插入图片描述
在这里插入图片描述

  • 5
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 《高等代数与解析几何》陈志杰pdf 是一本非常经典的数学教材,主要涵盖高等代数和解析几何的内容。该书的作者陈志杰是著名的数学教授,他对数学的研究和教学经验丰富。 这本教材共分为两大部分,分别是高等代数和解析几何。在高等代数部分,书中详细讲解了线性方程组、矩阵理论、线性空间、线性映射等基础内容。通过该部分的学习,读者可以掌握基本的代数知识和运算技巧。同时,该部分还介绍了向量空间的概念,并涉及了特征值和特征向量的计算,矩阵的相似性等高等代数的重要概念和定理。 而在解析几何部分,书中主要介绍了平面解析几何和空间解析几何的相关内容。通过学习,读者可以了解到平面和空间直角坐标系的建立和运算规则,并学会使用向量和坐标来解决几何问题。此外,书中还介绍了曲线方程和曲面方程的求解方法,如圆的方程、椭圆的方程、抛物线的方程等。解析几何是数学中的重要分支,与其他学科如物理、计算机科学等有很强的联系,因此学好解析几何对于培养科学思维和解决实际问题具有重要意义。 总的来说,《高等代数与解析几何》陈志杰pdf 致力于为读者提供全面且系统的高等代数和解析几何知识,对于数学爱好者和学习者来说是一本不可多得的宝贵资料。无论是作为教材还是作为参考书,该书都能帮助读者夯实数学基础,提高解题和分析问题的能力。 ### 回答2: 《高等代数与解析几何陈志杰pdf》是一本教材,主要讲解高等代数和解析几何的相关知识。高等代数是数学的一个分支,研究关于向量空间、线性变换、线性方程组和特征值等概念和定理,是数学学科中的基础课程之一。解析几何是数学中的一个分支,通过代数和几何方法研究线性空间中的点、直线、平面、曲线等对的性质和关系。 这本教材由陈志杰编写,他是一位数学教授,专注于代数和几何等数学领域的研究。这本教材以深入浅出的方式讲解了高等代数和解析几何的基本概念和定理,并附有大量的例题和习题供读者练习。通过学习这本教材,读者可以掌握高等代数和解析几何的基本理论和方法,提高数学思维能力和问题解决能力。 这本教材的特点是内容全面、结构清晰,既注重理论的讲解,又强调实际问题的应用。它涵盖了向量空间的基本性质、线性方程组的解法、矩阵理论和特征值等重要概念和定理,还包括解析几何中的直线、平面、曲线和曲面等几何对的性质和计算方法。教材中的例题和习题精心设计,能够帮助读者加深对知识的理解和掌握,提高解题能力。 总之,这本《高等代数与解析几何陈志杰pdf》是一本权威的教材,适合大学数学专业的学生以及对高等代数和解析几何感兴趣的读者阅读和学习,能够帮助他们系统地学习和掌握这两门学科的心知识。 ### 回答3: 《高等代数与解析几何陈志杰pdf》是一本由陈志杰编写的高等代数与解析几何教材的电子版本。这本教材可能是为了帮助学生更好地理解高等代数和解析几何的概念和理论而编写的。高等代数是数学中的一个分支,涉及线性代数、群论、环论、域论等内容,研究线性方程组、向量空间、线性变换等概念和性质。解析几何是数学中的另一个分支,主要研究欧氏空间中的几何对,如点、直线、面等,并通过解析方法来研究它们的性质和关系。这本教材可能包含了高等代数和解析几何的基本概念和定理,以及一些例题和习题,可以帮助学生巩固和拓展他们在这两个领域的数学知识和技能。这个pdf版本的教材可能更方便学生学习和阅读,因为它可以在电脑或其他电子设备上随时随地查阅,而不需要携带大量的纸质教材。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值