高等代数 线性映射(第9章)1 概念,运算,核与象

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
一.线性映射及其运算(9.1)
1.线性映射的定义与性质
(1)线性映射的定义:
在这里插入图片描述
(2)一些线性映射的例子:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注:例7中的 k k k不一定是数,但习惯上仍然称该线性变换为数乘变换

命题1:对任何线性映射 f ∈ H o m ( V , U ) f∈Hom(V,U) fHom(V,U)和恒等变换 I V ∈ H o m ( V , V ) , I U ∈ H o m ( U , U ) ℐ_V∈Hom(V,V),ℐ_U∈Hom(U,U) IVHom(V,V),IUHom(U,U),有 f I V = I U f = f fℐ_V=ℐ_Uf=f fIV=IUf=f
在这里插入图片描述

(3)线性映射的性质:

由于线性映射只比同构映射少了双射这个条件,因此只要某个同构映射的性质的证明不需要用到单射/满射的条件,那么线性映射就也具有该性质

性质1: Ꭿ ( 0 ) = 0 ′ Ꭿ(0)=0' (0)=0,其中 0 ′ 0' 0 V ′ V' V的零向量

性质2:对 ∀ α ∈ V , Ꭿ ( − α ) = − Ꭿ ( α ) ∀α∈V,Ꭿ(-α)=-Ꭿ(α) αV,(α)=(α)

性质3: Ꭿ ( k 1 α 1 + . . . + k s α s ) = k 1 Ꭿ ( α 1 ) + . . . + k s Ꭿ ( α s ) ( 3 ) Ꭿ(k_1α_1+...+k_sα_s)=k_1Ꭿ(α_1)+...+k_sᎯ(α_s)\qquad(3) (k1α1+...+ksαs)=k1(α1)+...+ks(αs)(3)

性质4: Ꭿ Ꭿ V V V中线性相关的向量组 α 1 , α 2 . . . α s α_1,α_2...α_s α1,α2...αs映成 V ′ V' V中线性相关的向量组 Ꭿ ( α 1 ) , Ꭿ ( α 2 ) . . . Ꭿ ( α s ) Ꭿ(α_1),Ꭿ(α_2)...Ꭿ(α_s) (α1),(α2)...(αs)
注意: Ꭿ Ꭿ 有可能把 V V V中线性无关的向量组映成 V ′ V' V中线性相关的向量组

性质5:如果 V V V是有限维的,且 α 1 , α 2 . . . α n α_1,α_2...α_n α1,α2...αn V V V的1个基,那么对于 V V V中任一向量 α = a 1 α 1 + a 2 α 2 + . . . + a n α n α=a_1α_1+a_2α_2+...+a_nα_n α=a1α1+a2α2+...+anαn,有 Ꭿ ( α ) = a 1 Ꭿ ( α 1 ) + a 2 Ꭿ ( α 2 ) + . . . + a n Ꭿ ( α n ) ( 4 ) Ꭿ(α)=a_1Ꭿ(α_1)+a_2Ꭿ(α_2)+...+a_nᎯ(α_n)\qquad(4) (α)=a1(α1)+a2(α2)+...+an(αn)(4)
在这里插入图片描述
在这里插入图片描述

性质6: σ σ σ V V V V ′ V' V的1个同构映射当且仅当 Ꭿ Ꭿ V V V V ′ V' V的1个可逆的线性映射

2.线性映射的存在性:

定理1:设 V , V ′ V,V' V,V都是域 F F F上的线性空间,且 V V V是有限维的;在 V V V中取1个基 α 1 , α 2 . . . α n α_1,α_2...α_n α1,α2...αn,在 V ′ V' V中任意取 n n n个向量 γ 1 . . . γ n γ_1...γ_n γ1...γn(其中可以有相同的),令 Ꭿ : V → V ′ a = ∑ i = 1 n a i α i ↦ ∑ i = 1 n a i γ i ( 6 ) Ꭿ:\qquad\qquad\qquad V→V'\qquad\qquad\qquad\\ \quad a=\displaystyle\sum_{i=1}^n{a_iα_i}↦\displaystyle\sum_{i=1}^n{a_iγ_i}\qquad(6) :VVa=i=1naiαii=1naiγi(6)
在这里插入图片描述

3.投影
(1)投影:
在这里插入图片描述

定理2:设 V V V是域 F F F上的1个线性空间, U , W U,W U,W V V V的2个子空间,且 V = U ⊕ W ( 7 ) V=U\oplus W\qquad(7) V=UW(7)任取 α ∈ V α∈V αV,设 α = α 1 + α 2   ( α 1 ∈ U , α 2 ∈ W ) α=α_1+α_2\,(α_1∈U,α_2∈W) α=α1+α2(α1U,α2W),令 P U : V → V     α ↦ α 1 ( 8 ) ℙ_U:\qquad\qquad V→V\\ \qquad\qquad\qquad\qquad\quad\:\:\: α↦α_1\qquad(8) PU:VVαα1(8) P U ℙ_U PU V V V上的1个线性变换,称 P U ℙ_U PU是平行于 W W W U U U上的投影, P U ℙ_U PU满足:$ P U ( α ) = { α 当 α ∈ U 0 当 α ∈ W ( 9 ) ℙ_U(α)=\begin{cases}α\qquad当α∈U\\0\qquad当α∈W\end{cases}\qquad(9) PU(α)={ααU0αW(9)满足(9)式的 V V V上的线性变换是唯一的
在这里插入图片描述
类似地,定义 P W ( α ) = α 2 ℙ_W(α)=α_2 PW(α)=α2,则 P W ℙ_W PW也是 V V V上的1个线性变换,称为平行于 U U U W W W上的投影
投影是很重要的1类线性变换

投影的性质: P U 2 = P U , P W 2 = P W , P U P W = P W P U = 0 ( 10 ) ℙ_U^2=ℙ_U,ℙ_W^2=ℙ_W,ℙ_Uℙ_W=ℙ_Wℙ_U=0\qquad(10) PU2=PU,PW2=PW,PUPW=PWPU=0(10)
在这里插入图片描述
在这里插入图片描述

(2)幂等变换:
在这里插入图片描述
(3)正交:
在这里插入图片描述
4.线性映射的运算
在这里插入图片描述
(1)线性映射的乘法:

也成为线性映射的合成复合
在这里插入图片描述
即:设 Ꭿ ∈ H o m ( V , U ) , B ∈ H o m ( U . W ) Ꭿ∈Hom(V,U),ℬ∈Hom(U.W) Hom(V,U),BHom(U.W),则 ( B Ꭿ ) ( a ) = B ( Ꭿ ( a ) )   ( a ∈ V ) (ℬᎯ)(a)=ℬ(Ꭿ(a))\,(a∈V) (B)(a)=B((a))(aV),称 B Ꭿ ℬᎯ B B ℬ B Ꭿ Ꭿ 复合合成乘法
在这里插入图片描述

(2)线性映射的逆映射:
在这里插入图片描述

定理3:映射 f : A → B f:A→B f:AB可逆的充要条件是: f f f是双射
在这里插入图片描述
推论:线性映射 Ꭿ ∈ H o m ( V , V ′ ) Ꭿ∈Hom(V,V') Hom(V,V)可逆的充要条件是: Ꭿ Ꭿ 是同构映射;从而 A − 1 ∈ H o m ( V ′ , V ) A^{-1}∈Hom(V',V) A1Hom(V,V)是同构映射

(3)线性映射的线性运算:
在这里插入图片描述
在这里插入图片描述
(4)线性映射的幂:
在这里插入图片描述
5.线性映射的整体结构
(1)代数:
在这里插入图片描述

注: H o m ( V , V ) Hom(V,V) Hom(V,V)中的单位元是恒等变换 I ℐ I

在这里插入图片描述
(2)线性映射的多项式:
在这里插入图片描述
(3)投影的性质:

命题2:设 U , W U,W U,W是域 F F F上线性空间 V V V的2个子空间,且 V = U ⊕ W V=U\oplus W V=UW,则平行于 W W W U U U上的投影 P U ℙ_U PU与平行于 U U U W W W上的投影 P W ℙ_W PW是正交的幂等变换,且它们的和等于恒等变换
在这里插入图片描述
在这里插入图片描述
注:前半部分的证明参见 一.3.(1) 部分

命题3:设 V V V是域 F F F上的线性空间, Ꭿ , B Ꭿ,ℬ ,B V V V上正交的幂等变换,且 Ꭿ + B = I Ꭿ+ℬ=ℐ +B=I,则 V = I m   Ꭿ ⊕ I m   B V=Im\,Ꭿ\oplus Im\,ℬ V=ImImB,且 Ꭿ Ꭿ 是平行于 I m   B Im\,ℬ ImB I m   Ꭿ Im\,Ꭿ Im上的投影, B ℬ B是平行于 I m   Ꭿ Im\,Ꭿ Im I m   B Im\,ℬ ImB上的投影
在这里插入图片描述

命题2和命题3结合在一起,利用线性变换的运算刻画了投影的特征性质

(4)镜面反射与对合变换:
在这里插入图片描述
在这里插入图片描述
(5)平移与幂零变换:
在这里插入图片描述
在这里插入图片描述
二.线性映射的核与象(9.2)
1.线性映射的核与象
(1)概念:
在这里插入图片描述
(2)性质:

命题4:设 Ꭿ Ꭿ 是域 F F F上线性空间 V V V V ′ V' V的1个线性映射,则 K e r   Ꭿ Ker\,Ꭿ Ker V V V的1个子空间, I m   Ꭿ Im\,Ꭿ Im V ′ V' V的1个子空间
在这里插入图片描述

(3)利用核与象判断 Ꭿ Ꭿ 的性质:

命题5:设 Ꭿ Ꭿ 是域 F F F上线性空间 V V V V ′ V' V的1个线性映射,则
Ꭿ Ꭿ 是单射当且仅当 K e r   Ꭿ = 0 Ker\,Ꭿ=0 Ker=0
Ꭿ Ꭿ 是满射当且仅当 I m   Ꭿ = V ′ Im\,Ꭿ=V' Im=V
在这里插入图片描述

2.核与象的关系
在这里插入图片描述
(1)结构关系:

定理4:设 Ꭿ Ꭿ 是域 F F F上线性空间 V V V V ′ V' V的1个线性映射,令 σ : V / K e r   Ꭿ → I m   Ꭿ α + K e r   Ꭿ → Ꭿ α σ:\qquad V/Ker\,Ꭿ→Im\,Ꭿ\\\qquadα+Ker\,Ꭿ→Ꭿα σ:V/KerImα+Kerα σ σ σ V / K e r   Ꭿ V/Ker\,Ꭿ V/Ker I m   Ꭿ Im\,Ꭿ Im的1个同构映射,从而 V / K e r   Ꭿ ≅ I m   Ꭿ ( 2 ) V/Ker\,Ꭿ\cong Im\,Ꭿ\qquad(2) V/KerIm(2)
在这里插入图片描述

(2)维数公式:

定理5:设 V , V ′ V,V' V,V都是域 F F F上的线性空间,且 V V V是有限维的,设 Ꭿ Ꭿ V V V V ′ V' V的1个线性映射,则 K e r   Ꭿ , I m   Ꭿ Ker\,Ꭿ,Im\,Ꭿ Ker,Im都是有限维的,且 d i m ( K e r   Ꭿ ) + d i m ( I m   Ꭿ ) = d i m ( V ) ( 3 ) dim(Ker\,Ꭿ)+dim(Im\,Ꭿ)=dim(V)\qquad(3) dim(Ker)+dim(Im)=dim(V)(3)
在这里插入图片描述
V V V是有限维的线性空间时, V V V V ′ V' V的线性映射 Ꭿ Ꭿ 的核的维数也称为 Ꭿ Ꭿ 零度; Ꭿ Ꭿ 的象 I m   Ꭿ Im\,Ꭿ Im的维数称为 Ꭿ Ꭿ ,记作 r a n k ( Ꭿ ) rank(Ꭿ) rank()
在这里插入图片描述

(3)线性映射的维数公式的一些应用:
在这里插入图片描述

定理6:设 V , V ′ V,V' V,V都是域 F F F上的 n n n维线性空间,且 Ꭿ Ꭿ V V V V ′ V' V的1个线性映射,则 Ꭿ Ꭿ 是单射当且仅当 Ꭿ Ꭿ 是满射
在这里插入图片描述
推论1:设 Ꭿ Ꭿ 是域 F F F上有限维线性空间 V V V上的1个线性变换,则 Ꭿ Ꭿ 是单射当且仅当 Ꭿ Ꭿ 是满射
在这里插入图片描述

通过通过线性映射的维数公式证明齐次线性方程组的解空间的维数公式:
在这里插入图片描述

3.通过核与象研究线性空间的结构
(1)将线性空间分解成核与象:
在这里插入图片描述

命题6:设 Ꭿ Ꭿ 是域 F F F上线性空间 V V V上的1个线性变换,如果 Ꭿ Ꭿ V V V上的幂等变换,那么 V = I m   Ꭿ   ⊕   K e r   Ꭿ ( 12 ) V=Im\,Ꭿ\,\oplus\,Ker\,Ꭿ\qquad(12) V=ImKer(12)
在这里插入图片描述

推论1:设 V = U ⊕ W V=U\oplus W V=UW,用 P U P_U PU表示平行于 W W W U U U上的投影,则 U = I m   P U , W = K e r   P U U=Im\,P_U,W=Ker\,P_U U=ImPU,W=KerPU
在这里插入图片描述
在这里插入图片描述

推论2:设 V V V是域 F F F上的线性空间,则 V V V的任一子空间 U U U是平行于 U U U的1个补空间在 U U U上的投影 P U P_U PU的象
在这里插入图片描述

推论3:设 V V V是域 F F F上的线性空间,则 V V V的任一子空间 W W W是平行于 W W W W W W的1个补空间上的投影的核
在这里插入图片描述

(2)余核:
在这里插入图片描述

命题7:设 Ꭿ Ꭿ 是域 F F F上线性空间 V V V V ′ V' V的1个线性映射,则 Ꭿ Ꭿ 是满射当且仅当 C o k e r   Ꭿ = 0 Coker\,Ꭿ=0 Coker=0
在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值