【数理方程】定解问题

数理方程

数学物理方程是研究物理、力学、工程技术及其他自然科学时,经一些简化得到的一些偏微分方程,反映客观世界物理量之间关系。这些偏微分方程研究物理量在空间的分布规律和在时间的变化规律。

课程内容:3方程(波动方程、热传导方程、拉普拉斯方程),4方法(分离变量法、行波法、积分变换法、格林函数法),2特殊函数(贝塞尔函数、勒让德多项式)

1典型方程&定解条件推导

1.1基本方程建立

  • 常微分方程:未知函数仅有1自变量,一元函数构成 y ′ ( x ) = x y'(x)=x y(x)=x
  • 偏微分方程:未知函数有>2个自变量,多元函数构成
    • 一维波方程
      ∂ 2 u ∂ t 2 = a 2 ∂ 2 x ∂ x 2 \frac{\partial ^2 u}{\partial t^2}=a^2\frac{\partial^2x}{\partial x^2} t22u=a2x22x
    • 一维热方程
      ∂ u ∂ t = a 2 ∂ 2 x ∂ x 2 \frac{\partial u}{\partial t}=a^2\frac{\partial^2 x}{\partial x^2} tu=a2x22x
    • Laplace方程
      ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 = 0 → Δ u = 0 \frac{\partial^2u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}=0 \rightarrow \Delta u=0 x22u+y22u+z22u=0Δu=0

1.1.1波方程

  • 波动方程 ∂ 2 u ∂ t 2 = a 2 ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 ) \frac{\partial^2 u}{\partial t^2}=a^2(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}) t22u=a2(x22u+y22u+z22u) 琴弦振动;杆、膜、液体、气体振动;电磁场震荡
弦振动

条件

  • 均匀柔软细弦做微小横向运动
  • ρ \rho ρ:弦线密度只受重力G、张力T作用
  • u ( x , t ) u(x,t) u(x,t):t时刻点x位移

-

无外力受力分析

  1. x向: T cos ⁡ α − T ′ cos ⁡ α ′ = 0 ↣ 近似 T ≈ T ′ T\cos\alpha-T'\cos\alpha'=0 \rightarrowtail 近似 T\approx T' TcosαTcosα=0近似TT
  2. 位移方向: − T sin ⁡ α + T ′ sin ⁡ α ′ − G = m a , G = ρ g d s -T\sin\alpha+T'\sin\alpha'-G=ma , G=\rho gds Tsinα+TsinαG=ma,G=ρgds
  3. sin ⁡ α ≈ tan ⁡ α = ∂ u ( x , t ) ∂ x , sin ⁡ α ′ ≈ ∂ u ( x + d x , t ) ∂ x \sin\alpha \approx\tan\alpha =\frac{\partial u(x,t)}{\partial x}, \sin\alpha'\approx\frac{\partial u(x+dx,t)}{\partial x} sinαtanα=xu(x,t),sinαxu(x+dx,t)
  4. 弧长微分: d s = 1 + ( ∂ u ( x , t ) ∂ x ) 2 d x ≈ d x ds=\sqrt{1+(\frac{\partial u(x,t)}{\partial x})^2}dx\approx dx ds=1+(xu(x,t))2 dxdx
  5. 微分中值定理: f ( a ) − f ( b ) = f ′ ( ξ ) ( b − a ) f(a)-f(b)=f'(\xi)(b-a) f(a)f(b)=f(ξ)(ba)
  6. 代入2. ,去掉g, T ρ = a \sqrt{\frac{T}{\rho}}=a ρT =a 得一维标准波方程 ∂ 2 u ( x , t ) ∂ t 2 = a 2 ∂ 2 u ( x , t ) ∂ x 2 \frac{\partial^2u(x,t)}{\partial t^2}=a^2\frac{\partial^2u(x,t)}{\partial x^2} t22u(x,t)=a2x22u(x,t)齐次方程
  7. 有外力作用,多f(x,t)自由项 ∂ 2 u ( x , t ) ∂ t 2 = a 2 ∂ 2 u ( x , t ) ∂ x 2 + f ( x , t ) \frac{\partial^2u(x,t)}{\partial t^2}=a^2\frac{\partial^2u(x,t)}{\partial x^2}+f(x,t) t22u(x,t)=a2x22u(x,t)+f(x,t) 非齐次方程
膜振动
  • 边界固定的均匀薄膜,在平衡位置附近做微小横向振动,无重力外力,膜上每点张力-常数
  • u ( x , y , t ) u(x,y,t) u(x,y,t):t时刻 M ( x , y ) M(x,y) M(x,y)位移
  1. x轴张力对膜作用力 ( T ∂ u ∂ x ∣ x + Δ x − T ∂ u ∂ x ∣ x ) Δ y (T\frac{\partial u}{\partial x}|_{x+\Delta x}-T\frac{\partial u}{\partial x}|_x)\Delta y (Txux+ΔxTxux)Δy, y轴 ( T ∂ u ∂ y ∣ y + Δ y − T ∂ u ∂ y ∣ y ) Δ x (T\frac{\partial u}{\partial y}|_{y+\Delta y}-T\frac{\partial u}{\partial y}|_y)\Delta x (Tyuy+ΔyTyuy)Δx 相加 = m a =ma =ma
  2. 微分中值定理
    T ∂ 2 u ∂ x 2 x = x + θ Δ x Δ x Δ y + T ∂ 2 u ∂ y 2 y = y + θ Δ y Δ y Δ x = Δ x Δ y ρ ∂ 2 u ∂ t 2 T\frac{\partial^2 u}{\partial x^2}_{x=x+\theta\Delta x}\Delta x\Delta y+T\frac{\partial^2 u}{\partial y^2}_{y=y+\theta\Delta y}\Delta y\Delta x=\Delta x\Delta y \rho\frac{\partial ^2 u}{\partial t^2} Tx22ux=x+θΔxΔxΔy+Ty22uy=y+θΔyΔyΔx=ΔxΔyρt22u
  3. Δ x → 0 , Δ y → 0 \Delta x\rightarrow 0,\Delta y\rightarrow 0 Δx0,Δy0 取极限, a = T ρ a=\sqrt{\frac{T}{\rho}} a=ρT
    ∂ 2 u ( x , y , t ) ∂ t 2 = a 2 ( ∂ 2 u ( x , y , t ) ∂ x 2 + ∂ 2 u ( x , y , t ) ∂ y 2 ) \frac{\partial^2 u(x,y,t)}{\partial t^2}=a^2(\frac{\partial^2 u(x,y,t)}{\partial x^2}+\frac{\partial^2 u(x,y,t)}{\partial y^2}) t22u(x,y,t)=a2(x22u(x,y,t)+y22u(x,y,t))

1.1.2热方程

  • 热传导方程 ∂ u ∂ t = a 2 ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 ) \frac{\partial u}{\partial t}=a^2(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}) tu=a2(x22u+y22u+z22u) 热传导中温度分布;流体扩散、粘性液体流动
  • 导热体:比热 C C C, 热传导系数 k k k, 密度 ρ \rho ρ为常数
  • u ( x , y , z , t ) u(x,y,z,t) u(x,y,z,t)表示t时刻 M ( x , y , z ) M(x,y,z) M(x,y,z)点温度, d S dS dS曲面微分, n n n为法向量指向外部; 取一包含 M M M点的封闭曲面 S S S, 研究温度 u u u规律
  1. 傅里叶热力学定律:一段时间 d t dt dt内,通过一块秒安吉 d S dS dS的热量 d Q dQ dQ正比于 d t , d S , ∂ u ∂ n dt,dS,\frac{\partial u}{\partial n} dt,dS,nu,-流出
    1. d Q = − k ∂ u ∂ n d S d t dQ=-k\frac{\partial u}{\partial n}dSdt dQ=knudSdt
      傅里叶热力学定律
    2. t 1 → t 2 t_1\rightarrow t_2 t1t2通过曲面 S S S流入区域 V V V的全部热量
    3. Q = ∫ t 1 t 2 ∬ S k ∂ u ∂ n d S d t Q=\int_{t_1}^{t_2}\iint\limits_{S}k\frac{\partial u}{\partial n}dSdt Q=t1t2SknudSdt
  2. 热量流入 V V V, [ t 1 , t 2 ] [t_1,t_2] [t1,t2]内温度变化 u 1 → u 2 u_1\rightarrow u_2 u1u2需要热量
    Q = ∭ V c ρ [ u ( x , y , z , t 2 ) − u ( x , y , z , t 1 ) ] d V Q=\iiint\limits_V c\rho[u(x,y,z,t_2)-u(x,y,z,t_1)]dV Q=Vcρ[u(x,y,z,t2)u(x,y,z,t1)]dV
  3. 方向导数 ∂ u ∂ l = ∂ u ∂ x cos ⁡ α + ∂ u ∂ y cos ⁡ β + ∂ u ∂ z cos ⁡ γ \frac{\partial u}{\partial l}=\frac{\partial u}{\partial x}\cos\alpha+\frac{\partial u}{\partial y}\cos\beta+\frac{\partial u}{\partial z}\cos\gamma lu=xucosα+yucosβ+zucosγ
    高斯公式 ∭ Ω [ ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ] d V = ∬ ∂ Ω P d y d z + Q d x d z + R d x d y \iiint\limits_\Omega[\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}]dV=\iint\limits_{\partial \Omega}Pdydz+Qdxdz+Rdxdy Ω[xP+yQ+zR]dV=ΩPdydz+Qdxdz+Rdxdy
    联立 ∬ S ∂ u ∂ n d S = ∭ Ω Δ u d V \iint\limits_S\frac{\partial u}{\partial n}dS=\iiint\limits_\Omega \Delta u dV SnudS=ΩΔudV
  4. 联立, a = k c ρ a=\sqrt{\frac{k}{c\rho}} a=cρk 得三位热传导方程 ∂ u ∂ t = a 2 ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 ) \frac{\partial u}{\partial t}=a^2(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}) tu=a2(x22u+y22u+z22u)齐次
  5. 有热源 ∂ u ∂ t = a 2 ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 ) + f ( x , y , z , t ) \frac{\partial u}{\partial t}=a^2(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}) + f(x,y,z,t) tu=a2(x22u+y22u+z22u)+f(x,y,z,t)非齐次
  6. 薄片导热体-二维热方程 ∂ u ∂ t = a 2 ( ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 ) \frac{\partial u}{\partial t}=a^2(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}) tu=a2(x22u+y22u)
  7. 细杆热导体-一维热方程 ∂ u ∂ t = a 2 ( ∂ 2 u ∂ x 2 ) \frac{\partial u}{\partial t}=a^2(\frac{\partial^2 u}{\partial x^2}) tu=a2(x22u)
  8. 恒稳温度场,各点温度不随时间改变->Laplace方程
  • 拉普拉斯方程 ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 + ∂ 2 u ∂ z 2 = 0 \frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}+\frac{\partial^2 u}{\partial z^2}=0 x22u+y22u+z22u=0 Δ u = 0 \Delta u=0 Δu=0 空间的静电场分布;静磁场分布;稳定温度场分布

1.2定解条件推导

1.2.1初始条件

  1. 波方程
    初位移 u ( x , t ) ∣ t = 0 = ϕ ( x ) u(x,t)|_{t=0}=\phi(x) u(x,t)t=0=ϕ(x)
    初速度 ∂ u ( x , t ) ∂ t ∣ t = 0 = Ψ ( x ) \frac{\partial u(x,t)}{\partial t}|_{t=0}=\varPsi(x) tu(x,t)t=0=Ψ(x)
  2. 热方程
    开始时刻物体内各点温度分布 u ( M , t ) ∣ t = 0 = f ( M ) u(M,t)|_{t=0}=f(M) u(M,t)t=0=f(M)
  3. Laplace方程
    稳恒状态,时间无关,无初始条件

1.2.2边界条件

  1. 波方程

    1. 给出未知函数 u ( x , t ) u(x,t) u(x,t)在端点 x = a x=a x=a的情况
      1. x = a x=a x=a为固定端, u ( x , t ) ∣ x = a = 0 u(x,t)|_{x=a}=0 u(x,t)x=a=0
      2. x = a x=a x=a作简谐振动 A sin ⁡ ω t A\sin\omega t Asinωt,则 u ( x , t ) ∣ x = a = A sin ⁡ ω t u(x,t)|_{x=a}=A\sin\omega t u(x,t)x=a=Asinωt
    2. 给出未知函数 u ( x , t ) u(x,t) u(x,t)在端点 x = a x=a x=a的导数的情况
      1. 端点处受一个位移方向外力 v ( t ) v(t) v(t) 作用 ∂ u ( x , t ) ∂ x ∣ x = a = v 1 ( t ) , v 1 ( t ) = v ( t ) T \frac{\partial u(x,t)}{\partial x}|_{x=a}=v_1(t), v_1(t)=\frac{v(t)}{T} xu(x,t)x=a=v1(t),v1(t)=Tv(t)
      2. v ( t ) = 0 v(t)=0 v(t)=0, 端点不受位移方向外力,自由端 ∂ u ( x , t ) ∂ x ∣ x = a = 0 \frac{\partial u(x,t)}{\partial x}|_{x=a}=0 xu(x,t)x=a=0
    3. 组合情况
      1. 端点a处受弹性体支撑,胡克定律 F = − k Δ ˙ x F=-k\dot\Delta x F=kΔ˙x : [ ∂ u ( x , t ) ∂ x + σ u ( x , t ) ] ∣ x = a = 0 , σ = k T [\frac{\partial u(x,t)}{\partial x}+\sigma u(x,t)]|_{x=a}=0, \sigma=\frac{k}{T} [xu(x,t)+σu(x,t)]x=a=0,σ=Tk
  2. 热传导问题

    1. 端点情况:直接给出 u u u在边界 S S S的值 f f f, 边界条件$ u|_S=f$
    2. 导数情况:导热体 V V V与周围介质无热量交换,边界 S S S热量流速=0
      1. 傅里叶热力学定律 热量流速 d Q d S d t = − k ∂ u ∂ n \frac{dQ}{dSdt}=-k\frac{\partial u}{\partial n} dSdtdQ=knu
      2. 边界条件: ∂ u ∂ n ∣ S = 0 \frac{\partial u}{\partial n}|_S=0 nuS=0
    3. 组合情况:导热体 V V V与周围介质 S S S有热量交换, u 1 u_1 u1介质温度
      1. 热学定律 d Q = k 1 ( u − u 1 ) d S d t dQ=k_1(u-u_1)dSdt dQ=k1(uu1)dSdt, 联立傅里叶热力学定律
      2. 边界条件: ( ∂ u ∂ n + σ u ) ∣ S = σ u 1 ∣ S , σ = k 1 k (\frac{\partial u}{\partial n}+\sigma u)|_S=\sigma u_1|_S, \sigma=\frac{k_1}{k} (nu+σu)S=σu1S,σ=kk1
  3. 边界条件分类

    1. 第1类边界条件:直接给出 u u u S S S u ∣ S = f u|_S=f uS=f
      1. 齐次条件 f = 0 f=0 f=0,非齐次条件 f ≠ 0 f\neq 0 f=0
    2. 第2类边界条件:沿 S S S外法线导数 ∂ u ∂ n ∣ S = f \frac{\partial u}{\partial n}|_S=f nuS=f
    3. 第3类边界条件:组合 ( ∂ u ∂ n + σ u ) ∣ S = f (\frac{\partial u}{\partial n}+\sigma u)|_S=f (nu+σu)S=f

1.3定解问题

方程+定解条件=定解问题

1.3.1定解问题提法

  1. 始值问题:方程+初始条件
    1. 一维无界波动问题:(方程), − ∞ < x < ∞ -\infty<x<\infty <x<
    2. 只有初始条件 u ∣ t = 0 = ? , ∂ u ∂ t ∣ t = 0 = ? u|_{t=0}=?,\frac{\partial u}{\partial t}|_{t=0}=? ut=0=?,tut=0=?
  2. 边值问题:方程+边界条件
    1. Laplace方程(方程)无时间
    2. 边界条件 u ( x , y , z ) ∣ ∂ Ω = f u(x,y,z)|_{\partial \Omega}=f u(x,y,z)Ω=f
  3. 混合问题:方程+边界条件+初始条件
    1. 有界状态一维热方程:(方程) 0 < x < l , t > 0 0<x<l,t>0 0<x<l,t>0
    2. 边界条件 u ∣ x = 0 = t 2 , u ( x , t ) ∣ x = l = t u|_{x=0}=t^2,u(x,t)|{x=l}=t ux=0=t2,u(x,t)x=l=t
    3. 初始条件 u ∣ t = 0 = ϕ ( x ) u|_{t=0}=\phi(x) ut=0=ϕ(x)

1.3.2定解问题解法

  • 解的存在性
  • 解的唯一性
  • 解的稳定性
  • 解法:分离变量法,行波法,积分变换法,格林函数法

一维热方程

一维波方程

题目

  1. 一均匀杆,长为 l l l,一端固定,另一端沿杆的轴线方向被拉长 e e e而静止,突然放手任其振动,试写出定解问题.
    在这里插入图片描述
  2. 一均匀杆,长为 l l l,一端固定,另一端沿杆的轴线方向受压,杆缩短为
    l ( l − 2 ε ) l(l-2\varepsilon) l(l2ε) 突然放手任其振动,试写出定解问题.
    在这里插入图片描述
  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值