目录
Q4:有哪些相关研究?如何归类?谁是这一课题在领域内值得关注的研究员?
Q8: 论文中的实验及结果有没有很好地支持需要验证的科学假设?
一、论文摘要
血糖水平需要定期监测以管理高血糖患者的健康状况。目前的血糖测量方法仍然依赖于侵入性技术,这些技术令人不适且增加了感染的风险。为了便于在家中进行日常护理,本文提出了一种智能的非侵入式血糖监测系统,可以根据智能手机光谱图(PPG)信号将用户的血糖水平区分为正常、临界和警告三个级别。该系统的主要实现过程包括:1)使用智能手机摄像头视频获取PPG信号的新型算法;2)拟合为基准的滑动窗口算法,以消除不同程度的基线漂移并将信号分割为单个周期;3)通过比较不同血糖水平的PPG信号,从高斯函数中提取特征;4)应用机器学习算法将有效样本分类为三个血糖水平。我们的系统在80名受试者的数据集上进行了评估。实验结果表明,该系统可以以97.54%的准确率将有效信号与无效信号分开,估计血糖水平的总体准确率达到81.49%。该系统为非侵入式血糖技术应用于日常或临床提供了参考。本文还表明,基于智能手机的PPG信号具有很大的潜力来评估个体的血糖水平。