【pytorch】MDN模型高斯分布概率计算的溢出问题

文章讨论了MixtureDensityNetwork在处理5维输入1维输出时遇到的数值计算挑战,特别是由于exp函数导致的loss为inf和nan问题。作者采用了torch库的normal类和log_prob、logsumexp函数来确保计算的稳定性和准确性,并在GitHub上提交了相关issue及代码。
摘要由CSDN通过智能技术生成

MDN (Mixture Density Network) 神经网络可以用来拟合任意非线性的条件概率分布 P ( y ∣ x ) P(y|x) P(yx). 原理是输出定义的 K K K个高斯分布的 π , σ ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值