Graph Mixture Density Networks 图混合密度网络

本文提出了一种名为图混合密度网络(GMDN)的方法,用于处理图结构数据的多模态输出分布。GMDN结合了混合密度网络(MDN)和深度图网络(DGN)的优点,能够在输入图条件下学习多峰输出分布。在随机流行病模拟和化学图回归任务中,GMDN展示了其在建模输出预测不确定性方面的优势,提供了一种有效处理结构相关现象的工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

是一类新的机器学习模型,可以适应条件为任意拓扑图的多模态输出分布。通过结合混合模型和图表示学习的思想,我们解决了一类更广泛的依赖结构化数据的具有挑战性的条件密度估计问题。我们在一个利用随机图进行随机流行病模拟的新基准应用程序上评估了我们的方法,显示了我们的方法在建模输出预测不确定性方面的有效性。图混合密度网络为研究具有非平凡条件输出分布的结构相关现象提供了的研究机会。

以输入x为条件近似目标值y的分布是有监督学习任务的核心。已知有监督方法可以近似给定输入的目标的预期条件分布,即,当目标分布为单峰且目标值的微小变化主要由随机噪声引起时,这是标准做法。然而,当回归问题的目标分布不是单峰分布时,大多数机器学习方法无法通过预测平均值来正确地表示它。多模态目标分布将多个可能的结果与给定的输入样本相关联,在这种情况下,通常讨论解决条件密度估计问题。为了解决这个问题,提出了混合密度网络(MDN)来近似任意复杂的条件目标分布。MDN是为向量性质的输入数据而设计的,但现实世界中的问题通常处理关系数据,其中结构会对可能的结果产生重大影响。

图的自适应处理,目标是通过不同的邻域聚合方案、图粗化和信息传播策略来推断给定任务的结构化样本的最佳表示。

主要贡献:提出了一种混合方法来处理图的机器学习方法中的多峰目标分布,称为图混合密度网络(GMDN)。该模型以输入图为条件,输出整个结构或其实体的多模态分布。给定一个可观测的输入图x,GMDN经过训练,通过最大似然估计来近似与目标随机变量y相关的(可能是多峰的)分布。可能性是密度估计任务需要优化的常用指标,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值