导言
CatBoost是一个强大的梯度提升算法,它在处理分类和回归任务时表现出色。在实际应用中,对模型进行解释和调试是非常重要的,可以帮助我们理解模型的决策过程、识别模型的不足之处,并进一步优化模型。本教程将详细介绍如何在Python中使用CatBoost进行模型解释与调试,并提供相应的代码示例。
特征重要性
CatBoost可以提供特征重要性指标,帮助我们理解模型对特征的重视程度。以下是一个简单的示例:
from catboost import CatBoostClassifier
from catboost import Pool
# 定义数据集
data = pd.read_csv('dat