目录
算法11.3 Metropolis-Hastings算法的采样过程
算法14.7 带基准线的REINFORCE算法
第三章 线性模型
算法3.1 两类感知器的参数学习算法
算法3.2 一种改进的平均感知器参数学习算法
算法3.3 广义感知器参数学习算法
第四章 前反馈神经网络
算法4.1 使用反向传播算法的随机梯度下降训练过程
第七章 网络优化与正则化
算法7.1 时序模型优化(SMBO)方法
算法7.2 一种逐次减半的动态资源分配方法
第十章 模型独立的学习方式
算法10.1 二分类的AdaBoost算法
算法10.2 自训练的训练过程
算法10.3 协同训练的训练过程
算法10.4 多任务学习中联合训练过程
算法10.5 模型无关的元学习过程
第十一章 概率图模型
算法 11.1 高斯混合模型的参数学习过程
算法 11.2 拒绝采样的采样过程