数理统计复习

本文详细介绍了统计学的基础知识,包括统计量与抽样分布、参数估计方法(如无偏估计、最大似然估计)、决策理论、贝叶斯估计、假设检验(如正态分布检验、x2检验)、方差分析与试验设计以及回归分析。同时提到了如何使用卡西欧991CNX计算器进行相关计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基础知识点

第一章 统计量与抽样分布

  • 样本联合分布函数的计算
  • 样本矩(修正样本方差和样本方差的区别)
  • 期望和方差的性质
  • 均值和方差的均值和方差
  • 经验分布函数F
  • 充分完备统计量证明(因子分解定理、指数型分布族)
  • 伽马函数
  • 贝塔函数
  • 卡方、t、f分布,性质
  • 分位数转换(α、1-α
  • 正态总体均值方差的分布(表格)
  • 最大、最小次序统计量概率密度函数

第二章 参数估计

  • 无偏估计
  • 均方误差准则(MSE)
  • 相合估计(E=估计量、D=0)
  • 矩估计法
  • 最大似然估计
  • 最小方差无偏估计(充分完备T,纠偏得到θ)
  • 有效估计(Fisher信息量、罗-克拉默下界)
  • 区间估计(查表)

第三章 统计决策与贝叶斯估计

  • 平方损失函数
  • 风险函数
  • 贝叶斯估计(平方损失、加权平方损失)
  • 贝叶斯风险(对损失函数求两次期望)

第四章 假设检验

  • 两类错误
  • 显著性检验(只考虑第一类错误)
  • 势函数(落在拒绝域的概率)
  • 正态总体均值与方差的假设检验(表格内容)
  • 非参数假设检验
    • 皮尔逊统计量
    • x2检验(拒绝域)
    • 有未知参数的x2检验(先用最大似然估计求未知参数的估计值)
  • 柯尔莫洛夫检验、斯米尔诺夫检验
  • 似然比检验(似然比的求法,联合分布的上确界)

第五章 方差分析与试验设计

  • 单因素表格(只考过单因素)
  • 两因素表格

第六章 回归分析

  • 一元线性回归(参数估计、参数分布、显著性检验)
  • 多元线性回归(参数估计、参数分布、显著性检验)

关于计算器

卡西欧991CNX或者得力的一款类似的计算器能够方便的计算各种所需数值,具体使用方法请参考对应的计算器的说明书

  • 统计功能:只需要将所有数据输入,就可以计算均值、方差、修正方差等
  • 矩阵功能:能够处理4x4以内的矩阵运算(转置、逆矩阵等)

相关资料下载

下载地址见参考资料 [4]
在这里插入图片描述

参考资料

[1] 伽马函数与贝塔函数
[2] 常用分布的期望和方差及性质
[3] 卡西欧计算器说明书
[4] GitHub地址

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值