单目标应用:基于北极海鹦优化(Arctic puffin optimization,APO)算法的微电网优化(MATLAB代码)

一、微电网模型介绍

微电网优化调度模型通常包括以下几个方面:

  1. 目标函数:微电网多目标优化调度通常包括多个目标,如最小化运行成本、降低环境污染、提高能源利用效率等。这些目标可能需要通过权重的方式进行综合,或者使用多目标优化算法来求解。

  2. 决策变量:涉及到微电网中的各种发电资源,如柴油发电机、微型燃气轮机、光伏电池、风机以及蓄电池等。这些设备的发电量或充放电状态是优化调度中的决策变量。

  3. 约束条件:包括系统的功率平衡约束、设备运行的物理限制、环境排放标准等。这些约束条件确保微电网在满足基本运行要求的前提下进行优化。

  4. 本文的微电网模型如下:

微电网多目标优化调度模型简介_vmgpqv-CSDN博客

参考文献

[1]李兴莘,张靖,何宇,等.基于改进粒子群算法的微电网多目标优化调度[J].电力科学与工程, 2021, 37(3):7

二、北极海鹦优化算法求解微电网

2.1算法简介

北极海鹦优化(Arctic puffin optimization,APO)算法是2024年提出一种智能优化算法。该算法模拟海鹦在空中飞行和水下觅食两个阶段的行为,旨在实现勘探与开发之间更好的平衡。该算法包括几个关键操作,包括空中飞行阶段的空中搜索和俯冲捕食,以及水下觅食阶段的采集觅食、强化搜索和捕食者规避。通过这些步骤,该算法旨在有目的地探索搜索空间,在探索和利用之间取得更好的平衡,从而避免陷入局部最优。APO包括空中飞行(探索)和水下觅食(开发)阶段。在探索阶段,引入Levy飞行和速度因子机制,增强算法跳出局部最优值的能力,提高收敛速度。在开发阶段,采用协同效应和自适应变化因子等策略,确保算法能够有效利用当前最佳解,指导搜索方向。此外,通过行为转换因子实现勘探和开发阶段之间的动态过渡,有效平衡了全球搜索和局部开发。

参考文献:

[1]Wen-chuan Wang, Wei-can Tian, Dong-mei Xu, Hong-fei Zang. Arctic Puffin Optimization: A Bio-inspired metaheuristic Algorithm for Solving Engineering Design Optimization. Advances in Engineering Software, 2024,195, 103694. Redirecting
                        
原文链接:https://blog.csdn.net/weixin_46204734/article/details/139967346

2.2部分代码

close all;
clear ; 
clc;
global P_load; %电负荷
global WT;%风电
global PV;%光伏
%%
TestProblem=1;
[lb,ub,dim,fobj] = GetFunInfo(TestProblem);
SearchAgents_no=50; % Number of search agents
Max_iteration=100; % Maximum number of iterations
[Best_score,Xbest,Convergence_curve]=(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
%% 画结果图
figure(1)
semilogy(Convergence_curve,'r-','linewidth',2);
legend('');
xlabel('迭代次数')
ylabel('运行成本与环境保护成本之和')
saveas(gca,'1.jpg');

2.3部分结果

三、完整MATLAB代码

v

  • 24
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值