无人机集群路径规划:四种优化算法(GOOSE、APO、LPO、SBOA)求解无人机集群路径规划,提供MATLAB代码

 一、单个无人机路径规划模型介绍

无人机三维路径规划是指在三维空间中为无人机规划一条合理的飞行路径,使其能够安全、高效地完成任务。路径规划是无人机自主飞行的关键技术之一,它可以通过算法和模型来确定无人机的航迹,以避开障碍物、优化飞行时间和节省能量消耗。

二、无人机集群模型介绍

本文中以5个无人机构成无人机集群,采用优化算法同时规划五个无人机的路径,每个无人机的成本由路径成本、威胁成本、高度成本和转角成本四个部分构成。无人机集群的总成本为5个无人机成本之和。

三、四种算法求解无人机集群路径规划

3.1四种算法介绍

3.1.1鹅优化算法

鹅优化算法(GOOSE Algorithm,GOOSE)是2024年提出的一种智能优化算法,该算法从鹅的休息和觅食行为获得灵感,当鹅听到任何奇怪的声音或动作时,它们会发出响亮的声音来唤醒群中的个体,并保证它们的安全。

参考文献

[1]Hamad R K, Rashid T A. GOOSE algorithm: a powerful optimization tool for real-world engineering challenges and beyond[J]. Evolving Systems, 2024: 1-26.
                        
原文链接:https://blog.csdn.net/weixin_46204734/article/details/139967699

3.1.2北极海鹦优化算法

北极海鹦优化(Arctic puffin optimization,APO)算法是2024年提出一种智能优化算法。该算法模拟海鹦在空中飞行和水下觅食两个阶段的行为,旨在实现勘探与开发之间更好的平衡。该算法包括几个关键操作,包括空中飞行阶段的空中搜索和俯冲捕食,以及水下觅食阶段的采集觅食、强化搜索和捕食者规避。通过这些步骤,该算法旨在有目的地探索搜索空间,在探索和利用之间取得更好的平衡,从而避免陷入局部最优。APO包括空中飞行(探索)和水下觅食(开发)阶段。在探索阶段,引入Levy飞行和速度因子机制,增强算法跳出局部最优值的能力,提高收敛速度。在开发阶段,采用协同效应和自适应变化因子等策略,确保算法能够有效利用当前最佳解,指导搜索方向。此外,通过行为转换因子实现勘探和开发阶段之间的动态过渡,有效平衡了全球搜索和局部开发。

参考文献:

[1]Wen-chuan Wang, Wei-can Tian, Dong-mei Xu, Hong-fei Zang. Arctic Puffin Optimization: A Bio-inspired metaheuristic Algorithm for Solving Engineering Design Optimization. Advances in Engineering Software, 2024,195, 103694. Redirecting
                        
原文链接:https://blog.csdn.net/weixin_46204734/article/details/139967346

3.1.3肺功能优化器

肺功能优化器(Lungs performance-based optimization,LPO)由Mojtaba Ghasemi 等人于2024年提出,其灵感来自人体肺的规律和智能性能。LPO从呼吸系统的复杂机制和适应性中汲取灵感。肺在氧交换方面表现出显着的效率,表明其功能高度优化。强制振荡技术测量气压和气流速率,以评估呼吸系统的电阻抗。阻抗曲线有两个不同的组成部分,呼吸电阻 (ZR) 和呼吸电抗 (ZX),可以从临床和工程角度进行分析,以深入了解呼吸系统的工作原理。

参考文献

[1] Ghasemi M, Zare M, Zahedi A, et al. Optimization based on performance of lungs in body: Lungs performance-based optimization (LPO)[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 419: 116582.
                        
原文链接:https://blog.csdn.net/weixin_46204734/article/details/139354492

3.1.4蛇鹫优化算法

蛇鹫优化算法(Secretary bird optimization algorithm,SBOA)由 Fu Youfa等人于2024年提出,该算法的灵感来自于蛇鹫在自然环境中的生存行为。

参考文献:

[1]Fu Y, Liu D, Chen J, et al. Secretary bird optimization algorithm: a new metaheuristic for solving global optimization problems[J]. Artificial Intelligence Review, 2024, 57(5): 1-102.
                        
原文链接:https://blog.csdn.net/weixin_46204734/article/details/139453663

3.2部分代码

close all
clear
clc
dbstop if all error
global model
model = CreateModel(); % 创建模型
F='F1';
[Xmin,Xmax,dim,fobj] = fun_info(F);%获取函数信息
pop=50;%种群大小(可以自己修改)
maxgen=100;%最大迭代次数(可以自己修改)
for i=1:length(algorithName)
    Algorithm=str2func(algorithName{i});
    [fMin,bestX,ConvergenceCurve] = Algorithm(pop, maxgen,Xmin,Xmax,dim,fobj);
    result(i).fMin=fMin;
    result(i).bestX=bestX;
    result(i).ConvergenceCurve=ConvergenceCurve;
    result(i).BestPosition=BestPosition;
    result(i).BestFit=BestFit;
    result(i).UAVfit=UAVfit;
end
save result result

3.3部分结果

四、完整MATLAB代码

见下方名片

### 无人机路径规划算法概述 无人机路径规划的核心目标是在满足特定约束条件下,找到一条最优或次优的飞行路径。这种路径通常需要考虑多种因素,如距离最短、能耗最低以及避开障碍物等。以下是几种常见的无人机路径规划算法及其特点: #### 鹅优化算法 (GOOSE Algorithm)优化算法是一种受自然界大雁迁徙行为启发的元启发式算法,在无人机集群路径规划中表现出良好的性能[^1]。该算法通过模拟群体协作机制来寻找全局最优解。具体而言,它能够有效地降低无人机集群的整体成本函数,其中包括路径长度、威胁区域暴露时间等因素。 #### 粒子群优化算法 (PSO) 粒子群优化算法源于鸟群觅食的行为模式,广泛用于连续空间内的寻优问题[^2]。当应用于无人机路径规划时,每个“粒子”代表一种可能的解决方案——即一组坐标点组成的轨迹;而整个种群则共同探索可行域直至收敛至最佳方案附近。相比其他传统方法,PSO具备计算效率高且易于实现的优点。 #### 自适应比例优化算法 (APO) 和局部优先级优化算法 (LPO) 这两种技术同样被提及作为解决多架无人飞机协同作业的有效工具之一。其中前者强调动态调整参数以应对不同场景需求变化的能力;后者侧重于分配任务给各个成员单位前先确定其相对重要程度顺序后再做进一步处理。 #### 海洋生物优化算法(SBOA) 此新型进化型框架模仿海洋生态系统内物种间相互作用规律设计而成, 对于大规模复杂网络结构下的资源调度类难题尤为适用. 下面给出一段简单的 MATLAB代码展示如何利用上述提到的一种典型方法(这里选取 PSO )来进行基本单体 UAV 的二维平面直线运动建模: ```matlab function [bestPosition,bestCost]=psoPathPlanning() % 初始化种群大小N=20;维数D=10; N=20; D=10; % 定义边界条件 minPos=-5*ones(1,D); maxPos=5*ones(1,D); minPos=-5*ones(1,D);maxPos=5*ones(1,D); % 设置最大迭代次数MaxIter=100; MaxIter=100; % 创建初始位置矩阵positions(NxD),速度velocity(NxD),个人极值personalBestPositions(NxD)和个人历史最好代价personalBestCosts(Nx1) positions=minPos+(maxPos-minPos).*rand(N,D); velocities=zeros(size(positions)); personalBestPositions=positions; [~,idxPersonalBest]=min(costFunction(positions,[],[]),[],2); personalBestCosts=costFunction(personalBestPositions(idxPersonalBest,:),[],[]); globalBestIdx=find(personalBestCosts==min(personalBestCosts),1,'first'); bestPosition=personalBestPositions(globalBestIdx,:); bestCost=personalBestCosts(globalBestIdx); w=0.7;c1=1.49;c2=1.49;%惯性权重w和社会认知系数c1,c2 for iter=1:MaxIter r1=rand();r2=rand(); velocities=w.*velocities+c1*r1.*(personalBestPositions-positions)+... c2*r2*(repmat(bestPosition,N,1)-positions); positions=positions+velocities; outOfBounds=(positions<minPos)|(positions>maxPos); positions(outOfBounds)=minPos(outOfBounds)+(maxPos(outOfBounds)-minPos(outOfBounds)).*rand(sum(outOfBounds(:)),1); currentCosts=costFunction(positions,[],[]); improved=currentCosts<personalBestCosts; personalBestPositions(improved,:)=positions(improved,:); personalBestCosts(improved)=currentCosts(improved); newGlobalBestIdx=find(personalBestCosts==min(personalBestCosts),1,'first'); if personalBestCosts(newGlobalBestIdx)<bestCost bestPosition=personalBestPositions(newGlobalBestIdx,:); bestCost=personalBestCosts(newGlobalBestIdx); end end end % Cost function placeholder - replace with actual implementation based on problem specifics. function cost=costFunction(pos,varargin) cost=sum((pos-[3,-2]).^2,2).^0.5; end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值