2024最新算法:河马优化算法(HO)求解23个基准函数

本文介绍了河马优化算法(HippopotamusOptimizationAlgorithm,HO),一种受河马生活习性启发的优化算法,用于解决函数优化问题。通过MATLAB实现的代码展示了如何使用HO求解23个测试函数,包括搜索空间和目标空间的可视化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、河马优化算法

河马优化算法(Hippopotamus optimization algorithm,HO)由Amiri等人于2024年提出,该算法模拟了河马在河流或池塘中的位置更新、针对捕食者的防御策略以及规避方法。河马优化算法的灵感来自河马生活中观察到的三种突出行为模式。河马群由几只雌性河马、河马幼崽、多只成年雄性河马和一只占主导地位的雄性河马(牛群的领导者)组成.由于它们与生俱来的好奇心,幼崽和小河马经常表现出远离群体的倾向。因此,它们可能会变得孤立并成为捕食者的目标。

参考文献:

[1]Amiri, Mohammad Hussein, et al. “Hippopotamus Optimization Algorithm: a Novel Nature-Inspired Optimization Algorithm.” Scientific Reports, vol. 14, no. 1, Springer Science and Business Media LLC, Feb. 2024, doi:10.1038/s41598-024-54910-3.

二、23个函数介绍

参考文献:

[1] Yao X, Liu Y, Lin G M. Evolutionary programming made faster[J]. IEEE transactions on evolutionary computation, 1999, 3(2):82-102.

三、HO求解23个函数

3.1部分代码

close all ;
clear
clc
Npop=30;                
Function_name='F1';     % Name of the test function that can be from F1 to F23 ( 
Tmax=300;              
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
[Best_fit,Best_pos,Convergence_curve]=HO(Npop,Tmax,lb,ub,dim,fobj);
figure('Position',[100 100 660 290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])
%Draw objective space
subplot(1,2,2);
semilogy(Convergence_curve,'Color','r','linewidth',3)
title('Search space')
xlabel('Iteration');
ylabel('Best score obtained so far');
axis tight
grid on
box on
legend('HO')
saveas(gca,[Function_name '.jpg']);


display(['The best solution is ', num2str(Best_pos)]);
display(['The best fitness value is ', num2str(Best_fit)]);


3.2部分结果

四、完整MATLAB代码

<think>好的,用户的问题是关于在MATLAB中调整LO算法的参数,特别是关键参数调整技巧。首先,我需要确认LO算法指的是什么。由于用户提到了引用中的河马优化算法HO algorithm),可能是打字错误,将HO误写为LO。不过也有可能LO是其他优化算法,比如Levenberg-Marquardt优化或其他算法。但根据提供的引用内容,只有HO算法的相关信息,所以这里可能是指HO算法,即河马优化算法。 接下来,我需要从提供的引用中寻找相关信息。引用[2]提到河马优化算法HO algorithm),并给出了一个例子,涉及最大迭代次数和维度(dimension)参数。因此,用户可能希望了解如何在MATLAB中调整HO算法的参数,如最大迭代次数、种群大小、维度等,以优化算法性能。 用户需要的关键点包括参数调整技巧,这可能涉及如何选择这些参数的值,以及它们对算法收敛速度和求解精度的影响。根据常见的优化算法参数调整经验,最大迭代次数、种群规模、搜索空间范围等都是关键参数。此外,可能需要考虑其他参数,如变异率、交叉率等,但引用中未具体提及河马优化算法的细节,因此需要基于一般优化算法的知识进行回答。 接下来,我需要确保回答符合用户的要求:结构清晰,分步骤解决问题,并引用提供的参考文献。需要确认引用中的例子,如引用[2]中的函数y=x²+y²+10的最小值求解,使用的参数是最大迭代次数1000,维度m=2,这可以作为例子说明参数设置的影响。 可能的参数调整技巧包括: 1. 最大迭代次数:设置过小可能导致未收敛,过大则增加计算时间。 2. 种群大小:较大的种群可能提高全局搜索能力,但计算成本增加。 3. 维度设置:根据问题变量数正确设置。 4. 搜索空间范围:合理定义变量的上下限,避免过大或过小。 5. 自适应参数调整:如动态调整步长或学习率。 需要将这些点结合引用中的例子进行说明,例如在引用[2]中,最大迭代次数设置为1000,维度为2,说明对于二维问题,较大的迭代次数可能有助于找到更优解。同时,可能需要提到如何通过实验调整参数,比如观察收敛曲线,调整种群大小等。 此外,用户可能希望了解如何在实际代码中调整这些参数,比如在MATLAB中修改相应的变量或结构体参数。需要确保回答中的建议具体,例如在代码中哪个部分修改最大迭代次数,如何测试不同参数的效果等。 最后,生成相关问题,需要围绕参数调整、算法性能分析、与其他算法的比较等方面提问,以帮助用户进一步探索。</think>### MATLAB河马优化算法HO)参数调整关键技巧 在MATLAB中实现河马优化算法HO)时,参数调整直接影响算法的收敛速度和求解精度。以下是关键参数的调整技巧及实践建议: --- #### **1. 最大迭代次数(Max Iterations)** - **作用**:控制算法运行时间与搜索深度。 - **调整建议**: - 初始值可参考问题复杂度,例如引用[2]中二维函数优化设置1000次迭代[^2]。 - **过小**:可能导致未收敛,结果陷入局部最优。 - **过大**:增加计算成本,需通过收敛曲线观察是否提前稳定。 - **代码示例**: ```matlab params.MaxIterations = 1000; % 根据问题调整 ``` --- #### **2. 种群规模(Population Size)** - **作用**:决定搜索空间的覆盖范围。 - **调整建议**: - **小规模**(如20-50):适合简单问题或快速验证。 - **大规模**(如100+):增强全局搜索能力,但计算量上升。 - 引用[2]未明确提及,但一般需与维度匹配,例如维度$m=2$时,种群规模可设为$10 \times m$[^2]。 --- #### **3. 变量维度(Dimension)** - **作用**:定义待优化变量的数量。 - **调整技巧**: - 必须与目标函数变量数严格一致,例如$y=x_1^2+x_2^2+10$对应$m=2$。 - 高维问题需配合增加种群规模或迭代次数。 --- #### **4. 搜索空间范围(Bounds)** - **作用**:限定变量取值范围,避免无效搜索。 - **调整建议**: - 根据先验知识设置合理上下限,例如$x \in [-10,10]$。 - 范围过宽会降低搜索效率,过窄可能漏掉全局最优解。 --- #### **5. 自适应参数(动态调整)** - **作用**:平衡探索与开发阶段。 - **常见方法**: - **步长调整**:迭代后期减小步长以提高局部搜索精度。 - **变异率**:增加后期扰动以避免早熟收敛。 - **示例代码**: ```matlab step_size = initial_step * (1 - iter/MaxIterations); % 线性递减 ``` --- #### **参数调优实践步骤** 1. **基准测试**:使用默认参数运行,记录收敛曲线和结果。 2. **单参数实验**:依次调整单个参数(如种群规模),观察性能变化。 3. **正交实验**:对多个参数组合进行对比,找到最优配置。 4. **可视化分析**:绘制目标函数值随迭代的变化图,判断是否早熟或震荡。 --- ### 相关问题 1. 如何通过收敛曲线判断HO算法是否需要增加迭代次数? 2. 种群规模与算法计算复杂度之间有何定量关系? 3. 在HO算法中,如何处理高维优化问题的“维度灾难”? 4. 如何结合其他优化算法(如PSO)改进HO的局部搜索能力? --- 通过合理调整上述参数,可显著提升河马优化算法MATLAB中的性能。具体实现时,建议结合目标函数特性进行针对性实验[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值