多目标优化算法求解WFG(Walking Fish Group)测试函数

WFG(Walking Fish Group)测试函数套件是一组用于多目标优化的基准测试问题,由Simon Huband, Luigi Barone, Lyndon While和Phil Hingston提出。这些测试问题旨在提供一个全面的测试平台,以评估多目标优化算法的性能。WFG测试集包含9个不同的可扩展多目标未约束问题,它们在目标和决策变量的数量上都是可扩展的。这些问题满足以下设计原则:

  1. 测试集中应包含一些单峰测试问题,它们具有不同的Pareto最优几何形状和偏差条件,以测试这些因素如何影响收敛速度。
  2. 测试集应包含三种Pareto最优几何形状:退化的Pareto最优前沿、不连续的Pareto最优前沿和不连续的Pareto最优集。
  3. 应包含多个多峰问题,以及一些具有欺骗性的问题。
  4. 大多数测试问题应该是不可分的。
  5. 应同时解决不可分和多峰问题。

具体到每个问题,它们具有以下特点:

  • WFG1:通过在加权求和约减中使用不同的权重,这个问题偏斜了不同参数的相对重要性。它是单峰的,具有凸面和混合的Pareto最优几何形状。
  • WFG2:这个问题是不可分的,单峰的,具有凸面和不连续的Pareto最优几何形状。
  • WFG3:这是一个不可分的,单峰问题,除了最后一个目标是多峰的。
  • WFG4:这是一个可分的,多峰问题,具有凹面的Pareto最优几何形状。这个问题的多峰性具有比WFG9更大的“山丘大小”,因此更具挑战性。
  • WFG5:这是一个欺骗性的,可分问题,具有凹面的Pareto最优几何形状。
  • WFG6:这个问题是不可分的和单峰的。它的Pareto最优几何形状是凹面的。这个问题的不可分约减使其比WFG2和WFG3更难。
  • WFG7:这个问题是可分的,单峰的,具有凹面的Pareto最优几何形状。这与WFG1是唯一既是可分的又是单峰的问题。
  • WFG8:这是一个不可分的,单峰问题,具有凹面的Pareto最优几何形状。
  • WFG9:这是一个多峰的,欺骗性的,不可分问题,具有凹面的Pareto最优几何形状。与WFG6类似,这个问题的不可分约减使其比WFG2和WFG3更难。

WFG测试集被广泛用于评估多目标优化算法的性能,特别是在处理具有挑战性的多峰、不可分和欺骗性问题时。这些问题的设计使得它们能够全面地测试优化算法在不同条件下的表现。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### 多目标优化中的常用测试函数 #### ZDT系列测试函数 ZDT (Zitzler-Deb-Thiele) 函数是一组广泛使用的多目标优化测试问题。这类函数的特点在于能够清晰地区分 Pareto 最优前沿的不同形状,从而评估算法性能[^1]。 特点: - 输入维度可变; - 明确定义的理想点和参考点; - 可控的复杂度参数设置; 用途: 用于验证进化算法在处理连续变量时的表现能力以及收敛性和分布性的评价。 ```matlab function [f, g] = zdt1(x) f(1) = x(1); g = 1 + 9 * mean(x(2:end)); h = 1 - sqrt(f / g); f(2) = g .* h; end ``` #### DTLZ系列测试函数 DTLZ (Deb-Thiele-Zitzler) 是另一类重要的多目标/多模态优化基准集。它具有高度灵活性,可以配置不同数量的目标、决策空间维数及连接程度等属性。 特点: - 支持多个目标(通常为3到5个); - 存在多种类型的Pareto最优解结构; - 能够模拟实际应用中存在的各种困难因素; 用途: 适用于研究高维多目标优化场景下求解器的有效性分析。 ```matlab function F = dtlz7(X,M) n=length(X); % number of variables k=n-M+1; % last 'k' vars are used to calculate g g=0; for i=(n-k+1):n g=g+(X(i)-0.5)^2-cos(20*pi*(X(i)-0.5)); end g=100*(k+g); obj=zeros(M,1); for i=1:M-1 obj(i)=X(i)*(1+g); end obj(end)=(1+g)*... prod(sin(pi*X(:)'./[1:n]').^(M:-1:1),[],2); F=obj'; end ``` #### WFG系列测试函数 WFG (Walking Fish Group) 提供了一套更为复杂的多目标优化挑战案例库。这些测试实例旨在引入更多现实世界的特性,比如位置偏移、凹凸不平的PF边界等等。 特点: - 设计考虑到了真实世界问题特征; - 包含了更丰富的几何形态变化; - 对抗噪声干扰能力强; 用途: 特别适合用来检验新型MOEAs对于解决工程领域内难题的能力。 ```matlab % 这里仅给出框架示意,具体实现较为繁琐 function result = wfg_problem_generator() ... end ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值