第3章(下)基于Softmax回归完成鸢尾花分类任务

3.3 实践:基于Softmax回归完成鸢尾花分类任务

在本节,我们用入门深度学习的基础实验之一“鸢尾花分类任务”来进行实践,使用经典学术数据集Iris作为训练数据,实现基于Softmax回归的鸢尾花分类任务。

实践流程主要包括以下7个步骤:数据处理、模型构建、损失函数定义、优化器构建、模型训练、模型评价和模型预测等,

  • 数据处理:根据网络接收的数据格式,完成相应的预处理操作,保证模型正常读取;
  • 模型构建:定义Softmax回归模型类;
  • 训练配置:训练相关的一些配置,如:优化算法、评价指标等;
  • 组装Runner类:Runner用于管理模型训练和测试过程;
  • 模型训练和测试:利用Runner进行模型训练、评价和测试。

说明:

使用深度学习进行实践时的操作流程基本一致,后文不再赘述。


本实践的主要配置如下:

  • 数据:Iris数据集;
  • 模型:Softmax回归模型;
  • 损失函数:交叉熵损失;
  • 优化器:梯度下降法;
  • 评价指标:准确率。

3.3.1 数据处理

3.3.1.1 数据集介绍

Iris数据集,也称为鸢尾花数据集,包含了3种鸢尾花类别(Setosa、Versicolour、Virginica),每种类别有50个样本,共计150个样本。其中每个样本中包含了4个属性:花萼长度、花萼宽度、花瓣长度以及花瓣宽度,本实验通过鸢尾花这4个属性来判断该样本的类别。

鸢尾花属性

属性1属性2属性3属性4
sepal_lengthsepal_widthpetal_lengthpetal_width
花萼长度花萼宽度花瓣长度花瓣宽度

鸢尾花类别

英文名中文名标签
Setosa Iris狗尾草鸢尾0
Versicolour Iris杂色鸢尾1
Virginica Iris弗吉尼亚鸢尾2

鸢尾花属性类别对应预览

sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
5.13.51.40.2setosa
4.931.40.2setosa
4.73.21.30.2setosa
3.3.1.2 数据清洗
  • 缺失值分析

对数据集中的缺失值或异常值等情况进行分析和处理,保证数据可以被模型正常读取。代码实现如下:

from sklearn.datasets import load_iris
import pandas
import numpy as np

iris_features = np.array(load_iris().data, dtype=np.float32)
iris_labels = np.array(load_iris().target, dtype=np.int32)
print(pandas.isna(iris_features).sum())
print(pandas.isna(iris_labels).sum())
0
0
iris = pandas.read_csv('/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/sklearn/datasets/data/iris.csv')
iris.head()
1504setosaversicolorvirginica
05.13.51.40.20
14.93.01.40.20
24.73.21.30.20
34.63.11.50.20
45.03.61.40.20

从输出结果看,鸢尾花数据集中不存在缺失值的情况。

  • 异常值处理

通过箱线图直观的显示数据分布,并观测数据中的异常值。

import matplotlib.pyplot as plt #可视化工具
%matplotlib inline

# 箱线图查看异常值分布
def boxplot(features):
    feature_names = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']

    # 连续画几个图片,subplots_adjust为子图调整,wspace, hspace:子图之间的横向间距、纵向间距分别与子图平均宽度、平均高度的比值。
    plt.figure(figsize=(3, 3), dpi=200)
    plt.subplots_adjust(wspace=0.6)
    # 每个特征画一个箱线图
    for i in range(4):
        plt.subplot(2, 2, i+1)
        # 画箱线图
        plt.boxplot(features[:, i], 
                    showmeans=True,             # 均值显示
                    meanprops={"markersize":1}, # 设置均值的属性,如点的大小、颜色等;
                    whiskerprops={"color":"#E20079", "linewidth":0.4, 'linestyle':"--"},  # 设置垂直虚线的属性,如颜色、粗细、线的类型等
                    flierprops={"markersize":0.4}) # 设置异常值属性,点的形状、填充色和边框色   
        # 图名,fontdict:控制标题文本的外观,pad:标题与轴顶部的距离
        plt.title(feature_names[i], fontdict={"size":5}, pad=2)
        # y方向刻度,fontsize:刻度值的大小,pad:刻度线与刻度值之间的距离
        plt.yticks(fontsize=4)
        plt.tick_params(pad=0.5)
        # x方向刻度
        plt.xticks([])
    plt.savefig('ml-vis.pdf')
    plt.show()

boxplot(iris_features)

png

从输出结果看,数据中基本不存在异常值,所以不需要进行异常值处理。

3.3.1.3 数据读取

本实验中将数据集划分为了三个部分:

  • 训练集:用于确定模型参数;
  • 验证集:与训练集独立的样本集合,用于使用提前停止策略选择最优模型;
  • 测试集:用于估计应用效果(没有在模型中应用过的数据,更贴近模型在真实场景应用的效果)。

在本实验中,将 80 % 80\% 80%的数据用于模型训练, 10 % 10\% 10%的数据用于模型验证, 10 % 10\% 10%的数据用于模型测试。代码实现如下:

import copy
import paddle 
import warnings
warnings.filterwarnings("ignore")

# 加载数据集
def load_data(shuffle=True):
    """
    加载鸢尾花数据
    输入:
        - shuffle:是否打乱数据,数据类型为bool
    输出:
        - X:特征数据,shape=[150,4]
        - y:标签数据, shape=[150]
    """
    # 加载原始数据
    X = np.array(load_iris().data, dtype=np.float32)
    y = np.array(load_iris().target, dtype=np.int32)

    X = paddle.to_tensor(X)
    y = paddle.to_tensor(y)

    # 数据归一化,最大最小值归一化
    X_min = paddle.min(X, axis=0)
    X_max = paddle.max(X, axis=0)
    X = (X-X_min) / (X_max-X_min)

    # 如果shuffle为True,随机打乱数据,randperm会生成一维的0 ~ X.shape[0]-1的乱序数组作为索引
    if shuffle:
        idx = paddle.randperm(X.shape[0])
        X = X[idx]
        y = y[idx]
    return X, y

# 固定随机种子
paddle.seed(102)

num_train = 120
num_dev = 15
num_test = 15

X, y = load_data(shuffle=True)
print("X shape: ", X.shape, "y shape: ", y.shape)
X_train, y_train = X[:num_train], y[:num_train]
X_dev, y_dev = X[num_train:num_train + num_dev], y[num_train:num_train + num_dev]
X_test, y_test = X[num_train + num_dev:], y[num_train + num_dev:]
X shape:  [150, 4] y shape:  [150]
# 打印X_train和y_train的维度
print("X_train shape: ", X_train.shape, "y_train shape: ", y_train.shape)
X_train shape:  [120, 4] y_train shape:  [120]
# 打印前5个数据的标签
print(y_train[:5])
Tensor(shape=[5], dtype=int32, place=CPUPlace, stop_gradient=True,
       [0, 1, 1, 0, 1])

3.3.2 模型构建

使用Softmax回归模型进行鸢尾花分类实验,将模型的输入维度定义为4,输出维度定义为3。代码实现如下:

from nndl import op

# 输入维度,类别数,实例化模型
input_dim = 4
output_dim = 3
model = op.model_SR(input_dim=input_dim, output_dim=output_dim)

3.3.3 模型训练

实例化RunnerV2类,使用训练集和验证集进行模型训练,共训练80个epoch,其中每隔10个epoch打印训练集上的指标,并且保存准确率最高的模型作为最佳模型。代码实现如下:

from nndl import op, metric, opitimizer, RunnerV2

# 学习率
lr = 0.2

# 梯度下降法,交叉熵损失,准确率,实例化RunnerV2
optimizer = opitimizer.SimpleBatchGD(init_lr=lr, model=model)
loss_fn = op.MultiCrossEntropyLoss()
metric = metric.accuracy
runner = RunnerV2(model, optimizer, metric, loss_fn)

# 启动训练
runner.train([X_train, y_train], [X_dev, y_dev], num_epochs=200, log_epochs=10, save_path="best_model.pdparams")
最佳精度模型已保存: 0.00000 --> 0.40000
[Train] epoch: 0, loss: 1.09861, score: 0.31667
[Dev] epoch: 0, loss: 1.08287, score: 0.40000
最佳精度模型已保存: 0.40000 --> 0.46667
最佳精度模型已保存: 0.46667 --> 0.66667
最佳精度模型已保存: 0.66667 --> 0.73333
[Train] epoch: 10, loss: 0.98697, score: 0.64167
[Dev] epoch: 10, loss: 0.97466, score: 0.73333
[Train] epoch: 20, loss: 0.90985, score: 0.65000
[Dev] epoch: 20, loss: 0.89974, score: 0.73333
[Train] epoch: 30, loss: 0.84734, score: 0.68333
[Dev] epoch: 30, loss: 0.83969, score: 0.73333
[Train] epoch: 40, loss: 0.79562, score: 0.72500
[Dev] epoch: 40, loss: 0.79042, score: 0.73333
[Train] epoch: 50, loss: 0.75237, score: 0.74167
[Dev] epoch: 50, loss: 0.74958, score: 0.73333
[Train] epoch: 60, loss: 0.71581, score: 0.78333
[Dev] epoch: 60, loss: 0.71535, score: 0.73333
最佳精度模型已保存: 0.73333 --> 0.80000
[Train] epoch: 70, loss: 0.68455, score: 0.80833
[Dev] epoch: 70, loss: 0.68637, score: 0.80000
最佳精度模型已保存: 0.80000 --> 0.86667
[Train] epoch: 80, loss: 0.65752, score: 0.81667
[Dev] epoch: 80, loss: 0.66154, score: 0.86667
[Train] epoch: 90, loss: 0.63390, score: 0.84167
[Dev] epoch: 90, loss: 0.64007, score: 0.86667
[Train] epoch: 100, loss: 0.61305, score: 0.84167
[Dev] epoch: 100, loss: 0.62130, score: 0.86667
[Train] epoch: 110, loss: 0.59449, score: 0.85833
[Dev] epoch: 110, loss: 0.60476, score: 0.86667
[Train] epoch: 120, loss: 0.57784, score: 0.85000
[Dev] epoch: 120, loss: 0.59004, score: 0.86667
[Train] epoch: 130, loss: 0.56279, score: 0.85833
[Dev] epoch: 130, loss: 0.57686, score: 0.86667
[Train] epoch: 140, loss: 0.54910, score: 0.86667
[Dev] epoch: 140, loss: 0.56497, score: 0.86667
[Train] epoch: 150, loss: 0.53658, score: 0.87500
[Dev] epoch: 150, loss: 0.55418, score: 0.86667
[Train] epoch: 160, loss: 0.52506, score: 0.88333
[Dev] epoch: 160, loss: 0.54432, score: 0.86667

可视化观察训练集与验证集的准确率变化情况。

from nndl import plot

plot(runner,fig_name='linear-acc3.pdf')

3.3.4 模型评价

使用测试数据对在训练过程中保存的最佳模型进行评价,观察模型在测试集上的准确率情况。代码实现如下:

# 加载最优模型
runner.load_model('best_model.pdparams')

# 模型评价
score, loss = runner.evaluate([X_test, y_test])
print(f"[Test] score/loss: {score:.4f}/{loss:.4f}")

3.3.5 模型预测

使用保存好的模型,对测试集中的数据进行模型预测,并取出1条数据观察模型效果。代码实现如下:

# 预测测试集数据,观察其中一条样本的预测结果,并获取该样本概率最大的类别
logits = runner.predict(X_test)
pred = paddle.argmax(logits[0]).numpy()
label = y_test[0].numpy()
print(f"正确的分类是 {label[0]} 预测的类别是 {pred[0]}")

3.4 小结

本节实现了Logistic回归和Softmax回归两种基本的线性分类模型。

3.5 实验拓展

为了加深对机器学习模型的理解,请自己动手完成以下实验:

  1. 尝试调整学习率和训练轮数等超参数,观察是否能够得到更高的精度;
  2. 在解决多分类问题时,还有一个思路是将每个类别的求解问题拆分成一个二分类任务,通过判断是否属于该类别来判断最终结果。请分别尝试两种求解思路,观察哪种能够取得更好的结果;
  3. 尝试使用《神经网络与深度学习》中的其他模型进行鸢尾花识别任务,观察是否能够得到更高的精度。
  • 0
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

绿洲213

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值