微分方程DE(2.1)

本文介绍了如何使用斜率场(或方向场)来绘制一阶微分方程的解决方案图形。内容包括理解函数在特定点的切线斜率,以及通过两种方法绘制斜率场:手动绘制和等高线方法。等高线法通过找出具有相同斜率的线,提高了绘制效率。此外,强调了解决方案曲线不能相交的微分方程理论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

draw graphs of solutions to first-order ODE’s by using slope (or direction) fields 用两种方法绘制斜率场

1st order DE:

函数在 I 区间可导,连续
确认x,y,那么函数在该点的切线斜率就已知,斜率场就可以被绘制
Get a sense of what type of function that is and can satisfy with the DE

Slope and Direction Fields
Collection of the line elements(有点像电场线的感觉)

示例

画出斜率场的方法:
1)手画(笨方法)
2)The method of isoclines(same +slope):

(iso=same; isosceles triangle等腰三角形
Incline, decline, the slope)

dy/dx = f(x,y)=c, c是常数,被称为isocline
(如果c=0, 称之为nullcline,一般从这个值开始)
egÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值