不定期备考小tips[常微][2] #20210528


本专栏主要作个人笔记,有相关知识预备的同学也可作复习用。不保证无相应基础的人士能看明白。
万一考试考到了,或者对你的学习有较大帮助,一键三连不过分吧(斜眼笑)

保守系统(续)

单摆

画相图的典型示例

d 2 d t 2 θ = − g l s i n θ \frac{d^2}{dt^2} \theta = -\frac gl sin\theta dt2d2θ=lgsinθ,取特征时间 τ \tau τ满足 ω = g l , τ = ω t \omega = \sqrt{\frac gl},\tau = \omega t ω=lg ,τ=ωt,则 d 2 d τ 2 θ = θ ¨ = − s i n θ \frac{d^2}{d\tau^2} \theta=\ddot \theta = -sin\theta dτ2d2θ=θ¨=sinθ
θ ˙ = v , v ˙ = − s i n θ \dot \theta = v,\dot v = -sin\theta θ˙=v,v˙=sinθ,试画相图。

  1. 画nullcline,即所有 θ ˙ = 0 \dot \theta=0 θ˙=0的点和 v ˙ = 0 \dot v = 0 v˙=0的点。
  2. 标注每个区域处 θ ˙ , v ˙ \dot \theta,\dot v θ˙,v˙的符号。
  3. 标注所有不动点,并对不动点作稳定性分析(可能手段:近似化,看图,看物理意义等)。
    举例:单摆例子中 v = 0 , θ = π v=0,\theta=\pi v=0,θ=π处显然不能稳定。(实际上是鞍点)
    对于线性近似后能求出特征方向的,可以求出特征方向,并辅助画图。
  4. 考察保守性、守恒量、闭轨。
    比如本例 1 2 θ ˙ 2 − c o s θ \frac 12 \dot \theta^2-cos\theta 21θ˙2cosθ守恒。 ( 0 , 0 ) (0,0) (0,0) 1 2 v 2 − c o s θ \frac 12 v^2-cos\theta 21v2cosθ的极小值点,根据保守场性质,闭轨存在。
    或者直接通过看等值线证明闭轨存在。
    或者通过对称性证明闭轨存在
  5. 考察异宿轨(通过两个鞍点)、同宿轨(两个鞍点“合并”为一个时的异宿轨)等特殊轨道。对于本题,通过等值线或对称性都可说明通过 ( − π , 0 ) (-\pi ,0) (π,0) ( π , 0 ) (\pi,0) (π,0)的异宿轨存在。
  6. 对称性在画相图中的作用
    确定相图形状,并且可以只画相图的一部分以画出其它部分。比如本题有中心对称、平移对称、 θ \theta θ τ \tau τ同时反号的对称。这说明只需要考察第一象限 0 ≤ θ ≤ π 0\le\theta\le\pi 0θπ的情况即可画出整张图
    在这里插入图片描述

周期大小

1 2 θ ˙ 2 − c o s θ = C = − c o s A \frac 12 \dot\theta^2-cos\theta=C=-cosA 21θ˙2cosθ=C=cosA θ ˙ = 2 c o s θ − 2 c o s A \dot \theta =\sqrt{2cos\theta-2cosA} θ˙=2cosθ2cosA
利用对称性,容易计算得 T ( A ) = C ∫ 0 A d θ c o s θ − c o s A T(A)=C\int_0^A \frac{d\theta}{\sqrt{cos\theta-cosA}} T(A)=C0AcosθcosA dθ A A A是角度的振幅, C C C是一常数。
该积分的性质

  1. A A A很小, θ \theta θ很小,线性近似下 s i n θ ≈ θ sin\theta\approx \theta sinθθ,原积分为 C ′ ∫ 0 A d θ A 2 − θ 2 = C ′ ∫ 0 1 d t 1 − t 2 = C ′ π / 2 C'\int_0^A \frac{d\theta}{\sqrt{A^2-\theta^2}}=C'\int_0^1 \frac{dt}{\sqrt{1-t^2}}=C'\pi/2 C0AA2θ2 dθ=C011t2 dt=Cπ/2,则单摆有等时性,周期与振幅无关。
  2. A A A趋向于 π \pi π时,相图中轨线趋向于异宿轨。回忆存在唯一性定理,推知“运动到平衡点”的所需时间发散(类比一维)。实际上容易验证 A → π A\to \pi Aπ时原积分发散。

圆柱上的相图

由于 θ \theta θ变化 2 π 2\pi 2π在物理上表示一个点,可以将两侧粘合形成圆柱。
当能量 E = 1 2 v 2 − c o s θ > 1 E=\frac 12 v^2-cos\theta>1 E=21v2cosθ>1,则物理意义是不断转圈(”进动“)不摆动,在平面相图上是不断向左或右一个方向运动,在圆柱上是不断绕柱作周期运动。
绕柱作周期运动的闭轨和前面平面上的闭轨具有不同的拓扑意义。
异宿轨在粘合后鞍点恰好合并了,成为同宿轨。
在这里插入图片描述
想象圆柱上的等能量线在设法弯曲圆柱后变为等高线,则直观看到:
在这里插入图片描述
E = 0 E=0 E=0处有分岔现象。
E > 0 E>0 E>0时看起来左右两情况旋转方向相同,但物理意义上旋转方向相反(把圆柱重新拉直可以看出)。

带阻尼的情况

θ ¨ + ϵ θ ˙ + s i n θ = 0 \ddot \theta + \epsilon \dot \theta +sin\theta=0 θ¨+ϵθ˙+sinθ=0
在这里插入图片描述
在平面相图上出现螺旋。在柱面相图上的情况可以通过弯曲的柱直观想象。

考察保守性的例题

进一步理解李雅普诺夫函数

x ˙ = − y + a x 3 , y ˙ = x + a y 3 \dot x = -y+ax^3, \dot y=x+ay^3 x˙=y+ax3,y˙=x+ay3
回顾:通过构造李雅普诺夫函数 x 2 + y 2 x^2+y^2 x2+y2,考虑其导数,证明 a ≠ 0 a\neq 0 a=0时系统不保守。
并不是任何函数都能具有如此功能。比如重力场中高度也单调,同种电荷排斥的有心力场中角度也单调。
实际上,这里的 x 2 + y 2 x^2+y^2 x2+y2的导数真正说明的要点是:原点是排斥的或吸引的,与保守场性质矛盾。
具体地:例如 a < 0 , d d t ( x 2 + y 2 ) = a ( x 4 + y 4 ) a<0, \frac d{dt} (x^2+y^2)=a(x^4+y^4) a<0,dtd(x2+y2)=a(x4+y4),则 x 2 + y 2 x^2+y^2 x2+y2单减下有界,必有极限,且容易说明极限必须为0,则原点是吸引的。而若 a > 0 a>0 a>0就时间反演,证明原点是排斥的。

可逆系统

定义: x ⃗ ˙ = F ⃗ ( x ⃗ ) \dot {\vec x}=\vec F(\vec x) x ˙=F (x ),在变换 t ′ = − t , x ⃗ ′ = R ( x ⃗ ) t'=-t,\vec x'=R(\vec x) t=t,x =R(x )下不变,其中 R R R是平面到平面的光滑双射且 R ( R ( x ⃗ ) ) = x ⃗ , ∀ x ⃗ R(R(\vec x))=\vec x,\forall \vec x R(R(x ))=x ,x (类比”对合矩阵“)

例:随手例题

x ˙ = − y + x 3 , y ˙ = x − y 3 \dot x = -y+x^3, \dot y=x-y^3 x˙=y+x3,y˙=xy3
容易求出零线 y = x 3 y=x^3 y=x3 x = y 3 x=y^3 x=y3,不动点 ( 0 , 0 ) , ( 1 , 1 ) , ( − 1 , − 1 ) (0,0),(1,1),(-1,-1) (0,0),(1,1),(1,1)
线性近似后:原点是中心。通过零线上的运动方向容易看出另外两个平衡点是鞍点。
线性近似前原点附近是否有闭轨?

  1. 可以直接交叉相乘相减 x ˙ x − y 3 x ˙ + y y ˙ − x 3 y ˙ \dot x x-y^3\dot x+y\dot y-x^3\dot y x˙xy3x˙+yy˙x3y˙找守恒量,再利用保守场性质说明有中心、有闭轨。
  2. 可以换极坐标发现 r r ˙ = r 4 c o s 2 θ , ( r − 2 ) ′ = C c o s 2 θ , θ ˙ = 1 + 小 量 r\dot r=r^4 cos2\theta,(r^{-2})'=Ccos2\theta,\dot\theta=1+小量 rr˙=r4cos2θ,(r2)=Ccos2θ,θ˙=1+,根据 r r r具有关于时间的周期性,容易说明附近不存在螺旋线。(实际上,线性近似后的中心在近似前的所有可能情况是能被完全分类的。若不存在螺旋,可以说明线性近似前是中心。具体阐述留待下一期)
  3. 或者可以利用体系关于 x ′ = y , y ′ = x , t ′ = − t x'=y,y'=x,t'=-t x=y,y=x,t=t的对称性,直接考察 y = x y=x y=x直线上点为起点的轨线,证明原点附近有一族闭轨。
  4. 和3.完全类似地:也可以利用关于 y = − x y=-x y=x直线的对称性。 x ′ = − y , y ′ = − x , t ′ = − t x'=-y,y'=-x,t'=-t x=y,y=x,t=t后方程不变。现在考察 x + y = 0 x+y=0 x+y=0直线上点为起点的轨线,证明原点附近有一族闭轨。
    小复习:如何求关于直线 y + x = 0 y+x=0 y+x=0的反射变换: y + x y+x y+x变换后是 − ( y + x ) -(y+x) (y+x) x − y x-y xy变换后不变,两式相加或相减发现 x x x变为 − y -y y y y y变为 − x -x x
    注:方法3.在书写时的严格说法:若 x = u ( t ) , y = v ( t ) x=u(t),y=v(t) x=u(t),y=v(t)是解曲线,则 x = v ( − t ) , y = u ( − t ) x=v(-t),y=u(-t) x=v(t),y=u(t)也是解曲线,考察这两条解曲线就找到了闭轨。

例:力场

x ¨ = f ( x ) \ddot x=f(x) x¨=f(x)为奇函数,首先系统保守(可以写出 x ˙ = y , y ˙ = f ( x ) \dot x=y,\dot y=f(x) x˙=y,y˙=f(x)交叉相乘相减证明)。
t ′ = − t t'=-t t=t时,根据物理含义, y ′ = − y y'=-y y=y t ′ = − t , y ′ = − y t'=-t,y'=-y t=t,y=y下方程不变,也就是物理规律不变

可逆与保守

  • 联系:都有中心与”一族闭轨“的结论。
    实际上可逆系统中,孤立的、线性近似后是中心的不动点周围都有一族闭轨。(重要补充说明:这里说到”周围“。其实这个命题是一个“局部性质”,要求不动点的邻域D映到自身,特别地,该孤立不动点在映射下不变。并不是所有满足原始定义的可逆系统都有此结论)
    具体证明略。根本思路是 x ⃗ \vec x x 运动到 R ( x ⃗ ) R(\vec x) R(x )的解曲线”对称后“仍是解曲线。
  • 典型的可逆但不保守的例子: x ˙ = − 2 c o s x − c o s y , y ˙ = − 2 c o s y − c o s x \dot x = -2cosx-cosy, \dot y=-2cosy-cosx x˙=2cosxcosy,y˙=2cosycosx。构造该反例的思想:先构造出一类”足够大“的可逆系统,再从该类中试图找不保守的(比如找出其中有结点的系统)。实际上,容易知道 x ˙ = f ( x ) + g ( y ) , y ˙ = h ( x ) + i ( y ) \dot x=f(x)+g(y),\dot y = h(x)+i(y) x˙=f(x)+g(y),y˙=h(x)+i(y),其中各 f , g , h , i f,g,h,i f,g,h,i都是偶函数,则系统在 t ′ = − t , x ′ = − x , y ′ = − y t'=-t,x'=-x,y'=-y t=t,x=x,y=y下不变。那么在各类偶函数中找出适当的,使得结点存在,就很简单。
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值