论文总结——Fast R-CNN

详情参看原论文:Fast R-CNN(https://arxiv.org/pdf/1504.08083.pdf

发现问题&关注点

作者团队主要关注了R-CNN和SPP-net的几个缺点:

  1. R-CNN和SPP-net的训练是一个繁琐的多阶段训练:一要fine-tune卷积网络、二要训练分类器(SVM)、三要训练回归器;
  2. R-CNN和SPP-net训练耗时耗力:多阶段训练带来的弊端导致要训练SVM和回归器,从每张图片的每个proposal提取出特征都必须要先写在硬盘上;
  3. R-CNN检测速度很慢:R-CNN的输入就是原图层面的proposal,导致特征的大量重复计算(SPP-net在这方面有所改进,在特征图层面上处理proposal)
  4. SPP-net结构缺陷:导致网络前馈的权重更新无法直接跨过Spatial pyramid pooling layer进行,使训练必须拆分成多个阶段,并且一定程度上限制了精度

解决方案——Fast R-CNN

作者团队主要针对R-CNN和SPP-net的多阶段训练提出了自己的解决方案——修改网络结构并引入Multi-tast Loss和RoI Pooling Layer,使得Fast R-CNN成为一个单一网络同时实现分类和检测的端到端的检测模型。
Fast R-CNN

RoI Pooling Layer

RoI Pooling Layer针对卷积神经网络输出的特征图上的RoI (proposal)输出一个固定大小的小特征图(small feature map)。
实质上就是单尺度的SPP Layer。
还有一个论文中没有明确说明的问题:针对输入图像的proposal(RoI)如何映射到特征图上的特定区域?这个问题我看到很多其他博主的理解都是:直接进行一个相应坐标经过一系列卷积和池化后在特征图上的坐标。这一部分先这样理解,之后有空参考源码再深入理解。

在这里插入图片描述

Multi-task Loss

从网络结构上看,RoI feature vector输入到两个全连接层后进行分类和回归,在网络结构上将分类和回归统一到了一个网络中。
模型的损失函数也体现了这一点。

公式占位
p 为 分 类 网 络 全 连 接 层 s o f t m a x 后 的 输 出 , 代 表 着 K ( 前 景 类 别 数 ) + 1 类 各 类 的 可 能 性 ; u 为 类 别 真 值 ; p为分类网络全连接层softmax后的输出,代表着K(前景类别数) + 1类各类的可能性;u为类别真值; psoftmaxK+1;u;
t u 是 回 归 网 络 对 b o u n d i n g − b o x 的 输 出 元 组 , t u = ( t x k , t y k , t w k , t h k ) ; v 为 b o u n d i n g − b o x 真 值 ; t^u是回归网络对bounding-box的输出元组,t^u=(t^k_x,t^k_y,t^k_w,t^k_h);v为bounding-box真值; tuboundingboxtu=(txk,tyk,twk,thk)vboundingbox;
λ 仅 当 真 值 u 为 前 景 类 别 ( u ≥ 1 ) 时 为 1 , 真 值 u 为 背 景 时 ( u = 0 ) 为 0 ; λ仅当真值u为前景类别(u ≥ 1)时为1,真值u为背景时(u = 0)为 0; λuu11uu=00;

论 文 中 : L c l s ( p , u ) = − l o g P u , L l o c ( t u , v ) = ∑ i ∈ { x , y , w , h } s m o o t h L 1 ( t i u − v i ) ; 论文中:L_{cls}(p,u)=-logP_u,L_{loc}(t^u, v) = \sum_{i\in{\{x,y,w,h\}}}smooth_{L1}{(t^u_i-v_i)}; :Lcls(p,u)=logPuLloc(tu,v)=i{x,y,w,h}smoothL1(tiuvi);

Mini-batch 采样策略

Fast R-CNN的Mini-batch 采样策略作为提升训练速度的重要措施,这里也提一下。

要采样R个RoI用于训练一个mini-batch:

  • R-CNN和SPP-net的采样策略:
    从N张图像中各取1个RoI(proposal),从而得到一个有N个RoI的mini-batch;【R = N】
  • Fast R-CNN的采样策略:
    N张图像每张图像中取R / N个RoI;【R = N * ( R / N )】

这种采样策略为什么限制了R-CNN和SPP-net的训练速度呢?
这是由于R-CNN和SPP-net有着非常大的感受野,而forward需要处理整个感受野对应部分的图像(在SPP-net往往是整个图像)。而这样的采样策略意味着训练每个mini-batch都需要重新处理N张图像。
当 R / N = 2时,Fast R-CNN的采样策略期望上只需要处理N/2张图像。

总结

虽说Fast R-CNN现在被看作R-CNN发展到Faster R-CNN的过渡,但其中仍然蕴含值得思考的Idea。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值