学习打卡 7.10-7.13

时间序列分析

一 基础概述

时间序列也成动态序列,是指某种现象的指标数值按照时间顺序排列而成的数值序列。

时间序列可以分为3个功能

1.描述过去

描述时间序列的动态变化

2.分析规律

揭示时间序列数值变化背后的规律

3.预测未来

依据数值变化规律预测未来数值趋势

常用的3种模型

1.季节分解

2.指数平滑方法

3.ARIMA模型

时间序列数据

对个统一对象在不同时间连续观察所获得的数据(time series data)

二 时间序列的两个要素

1.时间要素

例如:年,季度,月,周,日,小时,分钟,秒

2.数值要素

根据时间和数值性质的不同,可以分为时期时间序列和时点时间序列

1.时期序列中,数值要素反应现象在一定时期内发展的结果

2.时点序列中,数值要素反应现象在一定时点上的瞬间水平

区分:时点序列的数值相加没有意义

例如:灰色预测模型里就有一个累加的过程

三 时间序列分解

时间序列的数值变化有4中

1.长期趋势

在相当长一段时间内,持续上升或者下降,通常用T表示

比如:我国的GDP

2.季节趋势

指标数值发生周期性变化

季节是广义的,一般以月,季,周为单位,通常用S表示

比如:温度,一些问题的百度指数

3.循环变动(周期变动)

以若干年为一个周期,波浪式的周期变动,通常用C表示

比如:经济周期

4.不规则变动

不可预知没有规律性

可以视为众多偶然因素对时间序列造成的影响,通常用I表示

在回归中又被成为扰动项

以上4种变动就是时间序列数值变化的分解结果。有时会同时出现在一个时间序列里面,有时也可能只出现一种或者几种

最终变动关系可能是叠加关系,也可能是乘积关系

如果变动之间相互独立

Y=T+S+C+I

如果存在相互影响

Y=TSC*I

注意:

1.只有有周期性的时候才能使用时间序列分解

2.在具体的时间序列图上,如果随着时间的推移,序列的季节波动变得越来越大,则反映各种变动之间的关系发生变化,建议使用乘积模型;反之,如果时间序列图的波动保持恒定,则可以直接使用叠加模型;当然,如果不存在季节波动,则两种分解均可以。

四 Spss处理时间序列

(1)处理缺失值

1.缺失值发生在时间序列的开头或者尾部,可采用直接删除的方法

2.缺失值发生在序列的中间位置,则不能删除(删除后原有的时间序列会错位),可采用替换缺失值的方法

替换缺失值得5种方法

序列平均值

用整个序列的平均数代替缺失值

临近点的平均值

用相邻若干个点的平均数来替换缺失值(默认
为两个点)

临近点的中位数

用相邻若干个点的中位数来替换缺失值(默认
为两个点)

线性插值

用相邻两个点的平均数来替换缺失值

邻近点的线性趋势

将时期数作为x,时间序列值作为y进行回归,求缺失点的预测值

(2)定义时间变量

(3)绘制时间序列图

(4)季节性分解

周期为奇数时使用 所以点相等

周期为偶数时使用 端点按0.5加权

如果按照加法的模型

最后会得到4个新的变量

ERR_1
不规则变量(I)

SAS_1
季节性调整后序列(T+C+I)

SAF_1
季节性调整因子(S)

STC_1
趋势循环成分(T+C)

其中季节因子和为0

如果采用乘法分解,那么乘法季节因子的积为1

(5)画出分解后的时序图

(6)预测未来的指标数值

五 指数平滑模型

1.Simple模型

名称:简单指数平滑模型

适用条件:不含趋势和季节成分

与之类似的ARIMA模型:ARIMA(0,1,1)

其中α被称为平滑系数

关于平滑系数𝛼的选取原则:

1、如果时间序列具有不规则的起伏变化,但长期趋势接近一个稳定常数,α值一 般较小(取0.05‐0.02之间)

2、如果时间序列具有迅速明显的变化倾向,则α应该取较大值(取0.3‐0.5)

3、如果时间序列变化缓慢,亦应选较小的值(一般在0.1‐0.4之间)

弊端:由于公式的原因,所以只能预测一期的

2.线性趋势模型(linear trend)

名称:霍特线性趋势模型

适用条件:线性趋势、不含季节成分

与之类似的ARIMA模型:ARIMA(0,2,2)

Holt
在1957年把简单的指数平滑模型进行了延伸,能够预测包含趋势的数据, 该方法包含一个预测方程和两个平滑方程(一个用于水平,另一个用于趋势):

其中

t
当前期
h
预测超期期数,也称之为步长

xt :
第t期的实际观测值

lt
: 时刻t的预估水平
bt
时刻t的预测趋势(坡度)

α :水平的平滑参考数

β :趋势的平滑参数

特例:

布朗(Brown)线性趋势模型

假定α=β,即认为水平平滑参数和趋势平滑参数相等

3.阻尼趋势模型(Damped trend)

适用条件:线性趋势逐渐减弱且不含季节成分

与之类似的ARIMA模型:ARIMA(1,1,2)

经验表明,Holt的线性趋势模型倾向于对未来预测值过高,特别是对于长期预测。Gardner 和McKenzie (1985)在霍特的模型基础上引入了一种阻尼效应,用来缓解较高的线性趋势

增加了一个阻尼参数Φ(0<Φ<=1)

当Φ=1时,就是霍特线性趋势模型

在0-1之间是,会产生阻尼效应

4.简单季节性(Simple seasonal)

适用条件:含有稳定的季节成分,不含趋势

与之类似的ARIMA模型:SARIMA(0,1,1)*(0,1,1)s

其中

(取整函数)

m
:周期长度

α :水平的平滑参考数

β :趋势的平滑参数

γ :季节的平滑参数

5.温特加法模型(Winters’ additive)

适用条件:含有线性趋势和稳定的季节成分

与之类似的ARIMA模型:SARIMA(0,1,0)*(0,1,1)

6.温特乘法模型(Winters’ multiplicative)

适用条件:含有线性趋势和不稳定的季节成分

与之类似的ARIMA模型:不存在

六 一元时间序列分析的模型

1.时间序列的平稳性(stationary series)

若时间序列{xt}满足一下3个条件:

(1)E(xt)=E(xt-s)=u

(2)Var(xt)=Var(xt-s)=σ2

(3)Cov(xt,xt-s)=γs

则称{ xt }为协方差平稳(covariance
stationary),又称弱平稳

如果对于任意的tk和h,对于多维随机变量(xt1,xt2,…,xtk)和(xt1+h,xt2+h,…,xtk+h)的联合分布相同,则称{ xt }为严格平稳

注:严格平稳要求太高,因此在时间序列中提到的平稳没有特殊说明默认为弱平稳。

若时间序列{xt}满足一下3个条件:

(1)E(xt)=E(xt-s)=0

(2)Var(xt)=Var(xt-s)=σ2

(3)Cov(xt,xt-s)=0(s不为0)

则称{ xt }为白噪声序列(white noise)

白噪声序列是平稳时间序列的一个特例

一般我们认为扰动项服从白噪声序列

  1. 差分方程和滞后算子

1.差分方程

将某个时间序列变量表示为该变量的滞后项、时间和其他变量的
函数,这样的一个函数方程被称为差分方程。

举例:

yt=α0+α1yt-1+α2yt-2+…+αpyt-p+εt(自回归AR§模型)

yt=ε0+β1εt-1+β2εt-2+…+βpεt-p(移动平均MA(q)模型)

yt=α0+α1yt-1+α2yt-2+…+αpyt-p+εt+ε0+β1εt-1+β2εt-2+…+βpεt-p(自回归移动平均ARMA(p,q)模型)

差分方程的齐次部分:只包含该变量自身和它的滞后项的式子。

例如:

齐次部分为

将齐次部分转化成特征方程

令yt=xt后,带入计算

特征方程是一个p阶多项式,对应可求出p个解(可能有实根,也可能有虚根)

接的模长的大小决定了ARMA(p,q)模型的{yt}是否平稳

2.滞后因子

用符号L表示滞后算子(lag operator):

Liyt=yt-i

性质:

(1)LC=C

(2)(Li+Lj)yt=yt-i+yt-j

(3)LiLj yt= yt-i-j

比如ARMA(p,q)模型可以转化为

一阶差分:

二阶差分:

d阶差分:

季节差分:

  1. AR模型(auto
    regressive)

自回归:将自己的1至p阶滞后项视为自变量进行回归

yt=α0+α1yt-1+α2yt-2+…+αpyt-p+εt(自回归AR§模型)

回归模型的扰动项:

异方差(横截面数据)

自相关(时间序列)

自回归只能适用于预测与自身前期相关的经济现象,即受自身历史因素影响较大的经济现象,如矿的开采量,各种自然资源产量等。对于受社会因素影响较大的经济现象,不宜采用自回归,而应使用可纳入其他变量的向量自回归模型(多元时间序列)

注意:

我们讨论的AR§模型一定是平稳的时间序列模型,

如果原数据不平稳也要先转换为平稳的数据才能再进行建模

AR§模型平稳的条件

首先将齐次部分转化成特征方程

特征方程是一个p阶多项式,可以解出p个解

(1)如果模长均小于1,则平稳,称{yt}对应的AR§模型平稳

(2)如果有k个解的模长等于1,称为k阶单位根过程

(3)如果至少有一个模长大于1,则称为爆炸过程

  1. MA模型

q阶移动平均过程(MA(q)模型)

yt=ε0+β1εt-1+β2εt-2+…+βpεt-p(移动平均MA(q)模型)

只要q是常数,那么MA(q)模型一定是平稳的。

MA模型和AR模型的关系

我们可以将1阶移动平均模型转换为无穷阶的自回 归模型,这一性质称为移动平均模型的可逆性;类似的,我们在某些条件下(可逆性 条件)也可以将MA(q)模型也转换为无穷阶的自回归过程。 一般地,任何经济变量的时间序列都可以自回归过程来描述。但在模型分析的实 践中,为简化估计参数的工作量,我们当然希望模型当中的参数尽可能地少。于是便
有了引进移动平均过程MA(q)的必要。

  1. ARMA模型

自回归移动平均模型(Autoregressive Moving Average,ARMA),就是设法将自回 归过程AR和移动平均过程MA结合起来,共同模拟产生既有时间序列样本数据的那 个随机过程的模型。

ARMA(p,q)模型:

ARMA(p,q)模型的平稳性

平稳性只和自回归AR§部分有关

方法同上

一般,我们可以通过观察时序图来判断时间序列是否平稳,当然,也有相应的
假设检验方法能帮助我们对数据的平稳性进行检验(由于第三种情况几乎不会发生, 因此我们只需要检验时间序列是单位根还是平稳的即可)。

例如:Augmented Dickey‐Fuller单位根检验(ADF 检验)、KPSS检验、PP检验。 (参见:陈强《高级计量经济学》第二版P414)

  1. ACF和PACF

相关系数:

自相关系数:我们要假定时间序列是平稳的

其中

因为真实的样本自相关系数是未知的,所以我们只能估计

注意:如果是白噪声序列,当s=0时ρs=0,否则ρs=1

PACF偏自相关函数

其中Φ表示自线性相关函数

et表示不能用线性衡量的部分

一些实例

  1. AIC和BIC准则(选小原则)

赤池信息准则(AkaikeInformation Criterion,AIC)

𝑨𝑰𝑪=𝟐(模型中参数的个数)-𝟐𝒍𝒏(模型的极大似然函数值)

贝叶斯信息准则(Bayesian Information Criterion,BIC)

𝑩𝑰𝑪
=𝒍𝒏
(𝑻)( 模型中参数的个数)-𝟐𝒍𝒏 (模型的极大似然函数值)

T表示样本个数

n表示模型中的参照个数(反映模型的复杂程度)

模型的极大似然函数值:反映模型对于数据解释(拟合)程度

AIC和BIC是选小原则,我们要选择使得AIC或BIC小的模型。

(BIC对于模型的复杂程度的惩罚系数更大,因此BIC往往比AIC选择的模型更简洁)

  1. ARIMA模型

差分自回归移动平均模型

ARIMA(p,d,q)模型:

化简后得

举例:

  1. SARIMA模型

季节性ARIMA模型是通过在ARIMA模型中包含额外的季节性项而生成的,其形式如下:SARIMA (p,d,q) (P,D,Q)m

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值