第三课:深入理解机器学习模型评估与改进
第三课:机器学习模型评估与改进
1. 模型评估的重要性
在机器学习项目中,仅仅建立模型是不够的,我们还需要评估模型的性能,确保模型能够准确、有效地对新数据进行预测。模型评估有助于我们识别并改进模型的不足之处。
2. 数据划分
- 训练集和测试集:为了评估模型性能,我们通常将数据分为训练集和测试集。模型使用训练集学习,然后使用测试集来评估模型性能。
- 交叉验证:为了更准确地评估模型性能,可以使用交叉验证技术,如k折交叉验证,它将数据分为k个部分,轮流将其中一部分作为测试集,其余作为训练集,进行k次训练和测试。
3. 性能指标
- 准确率:正确预测的数量除以总预测数量。
- 召回率:在所有正类中,模型正确识别出的比例。
- 精确度:在所有模型识别为正类的样本中,实际为正类的比例。
- F1分数:精确度和召回率的调和平均值,用于综合