吴恩达大模型LLM系列课程学习(更新42门课程)

目录

GPT-4o详细中文注释的Colab

中文注释链接:https://github.com/Czi24/Awesome-MLLM-LLM-Colab/tree/master/Courses/Prompt-Compression-and-Query-Optimization

中英文字幕观看视频

1 浏览器下载插件

沉浸式翻译

设置你需要用的翻译软件

2 打开官方视频

视频官方地址:https://learn.deeplearning.ai/courses/prompt-compression-and-query-optimization/lesson/1/introduction

打开自动开启双语字幕

仓库:https://github.com/Czi24/Awesome-MLLM-LLM-Colab

课程1:Prompt Compression and Query Optimization

Prompt Compression and Query Optimization提示压缩与查询优化
Introduction介绍
Vanilla Vector Search基础向量搜索
Filtering With Metadata元数据过滤
Projections投影
Boosting提升
Prompt Compression提示压缩
Conclusion结论
Appendix-Tips and Help附录-提示和帮助

课程2:Carbon Aware Computing for GenAI developers

Carbon Aware Computing for GenAI developers面向生成式AI开发人员的碳感知计算
Introduction介绍
The Carbon Footprint of Machine Learning机器学习的碳足迹
Exploring Carbon Intensity on the Grid探索电网中的碳强度
Training Models in Low Carbon Regions在低碳地区训练模型
Using Real-Time Energy Data for Low-Carbon Training使用实时能源数据进行低碳训练
Understanding your Google Cloud Footprint了解你的谷歌云碳足迹
Next steps下一步
Conclusion结论
Google Cloud Setup谷歌云设置

课程3:Function-calling and data extraction with LLMs

Function-calling and data extraction with LLMs使用LLMs进行函数调用和数据提取
Introduction介绍
What is function calling什么是函数调用
Function calling variations函数调用的变体
Interfacing with external tools与外部工具的接口
Structured Extraction结构化提取
Applications应用
Course project dialog processing课程项目对话处理
Conclusion结论

课程4:Building Your Own Database Agent

Building Your Own Database Agent构建你自己的数据库代理
Introduction介绍
Your First AI Agent你的第一个AI代理
Interacting with a CSV Data处理CSV数据
Connecting to a SQL Database连接SQL数据库
Azure OpenAI Function Calling FeatureAzure OpenAI函数调用功能
Leveraging Assistants API for SQL Databases利用助手API处理SQL数据库
Conclusion结论

课程5:AI Agents in LangGraph

AI Agents in LangGraphLangGraph中的AI代理
Introduction介绍
Build an Agent from Scratch从头构建代理
LangGraph ComponentsLangGraph组件
Agentic Search Tools代理搜索工具
Persistence and Streaming持久性与流媒体
Human in the loop人在回路中
Essay Writer文章写作
LangChain ResourcesLangChain资源
Conclusion结论

课程6:AI Agentic Design Patterns with AutoGen

AI Agentic Design Patterns with AutoGen使用AutoGen的AI代理设计模式
Introduction介绍
Multi-Agent Conversation and Stand-up Comedy多代理对话与单口喜剧
Sequential Chats and Customer Onboarding连续聊天与客户入职
Reflection and Blogpost Writing反思与博客写作
Tool Use and Conversational Chess工具使用与对话象棋
Coding and Financial Analysis编码与财务分析
Planning and Stock Report Generation规划与股票报告生成
Conclusion结论

课程7:Introduction to on-device AI

Introduction to on-device AI设备端AI简介
Introduction介绍
Why on-device为什么选择设备端AI
Deploying Segmentation Models On-Device部署设备端分割模型
Preparing for on-device deployment准备设备端部署
Quantizing Models量化模型
Device Integration设备集成
Conclusion结论
Appendix - Building the App附录 - 构建应用
Appendix - Tips and Help附录 - 提示和帮助

课程8:Multi AI Agent Systems with crewAI

Multi AI Agent Systems with crewAI使用crewAI的多AI代理系统
Introduction介绍
Overview概览
AI AgentsAI代理
Create agents to research and write an article (code)创建代理进行研究和写文章(代码)
Key elements of AI agentsAI代理的关键要素
Multi agent customer support automation (code)多代理客户支持自动化(代码)
Mental framework for agent creation代理创建的思维框架
Key elements of agent tools代理工具的关键要素
Tools for a customer outreach campaign (code)客户外展活动的工具(代码)
Recap of tools工具回顾
Key elements of well defined tasks定义明确任务的关键要素
Automate event planning (code)自动化事件规划(代码)
Recap on tasks任务回顾
Multi agent collaboration多代理协作
Multi agent collaboration for financial analysis (code)多代理财务分析协作(代码)
Build a crew to tailor job applications (code)创建团队定制工作申请(代码)
Next steps with AI agent systemsAI代理系统的下一步
Conclusion结论
How to get your completion badge如何获得完成徽章

课程9:Building Multimodal Search and RAG

Building Multimodal Search and RAG构建多模态搜索和RAG
Introduction介绍
Overview of Multimodality多模态概述
Multimodal Search多模态搜索
Large Multimodal Models (LMMs)大型多模态模型(LMMs)
Multimodal RAG (MM-RAG)多模态RAG(MM-RAG)
Industry Applications行业应用
Multimodal Recommender System多模态推荐系统
Conclusion结论
Appendix - Tips and Help附录 - 提示和帮助

课程10:Building Agentic RAG with Llamaindex

Building Agentic RAG with Llamaindex使用Llamaindex构建Agentic RAG
Introduction介绍
Router Query Engine路由查询引擎
Tool Calling工具调用
Building an Agent Reasoning Loop构建代理推理循环
Building a Multi-Document Agent构建多文档代理
Conclusion结论

课程11:Quantization in Depth

Quantization in Depth深入量化
Introduction介绍
Overview概览
Quantize and De-quantize a Tensor量化和反量化张量
Get the Scale and Zero Point获取比例和零点
Symmetric vs Asymmetric Mode对称模式与非对称模式
Finer Granularity for more Precision更精细的粒度以提高精度
Per Channel Quantization每通道量化
Per Group Quantization每组量化
Quantizing Weights & Activations for Inference推理的权重和激活量化
Custom Build an 8-Bit Quantizer自定义构建8位量化器
Replace PyTorch layers with Quantized Layers用量化层替换PyTorch层
Quantize any Open Source PyTorch Model量化任何开源PyTorch模型
Load your Quantized Weights from HuggingFace Hub从HuggingFace Hub加载量化权重
Weights Packing权重打包
Packing 2-bit Weights打包2位权重
Unpacking 2-Bit Weights解包2位权重
Beyond Linear Quantization超越线性量化
Conclusion结论

课程12:Prompt Engineering for Vision Models

Prompt Engineering for Vision Models视觉模型的提示工程
Introduction介绍
Overview概览
Image Segmentation图像分割
Object Detection目标检测
Image Generation图像生成
Fine-tuning微调
Conclusion结论
Appendix附录

课程13:Getting Started with Mistral

Getting Started with Mistral入门Mistral
Introduction介绍
Overview概览
Prompting提示
Model Selection模型选择
Function Calling函数调用
RAG from Scratch从零开始构建RAG
Chatbot聊天机器人
Conclusion结论

课程14:Quantization Fundamentals with Hugging Face

Quantization Fundamentals with Hugging FaceHugging Face的量化基础
Introduction介绍
Handling Big Models处理大模型
Data Types and Sizes数据类型和大小
Loading Models by data type按数据类型加载模型
Quantization Theory量化理论
Quantization of LLMsLLMs的量化
Conclusion结论

课程15:Preprocessing Unstructured Data for LLM Applications

Preprocessing Unstructured Data for LLM Applications预处理LLM应用程序的非结构化数据
Introduction介绍
Overview of LLM Data PreprocessingLLM数据预处理概述
Normalizing the Content内容规范化
Metadata Extraction and Chunking元数据提取和分块
Preprocessing PDFs and Images预处理PDF和图像
Extracting Tables提取表格
Build Your Own RAG Bot构建你自己的RAG机器人
Conclusion结论
Appendix - Tips and Help附录 - 提示和帮助

课程16:Red Teaming LLM Applications

Red Teaming LLM ApplicationsLLM应用程序的红队测试
Introduction介绍
Overview of LLM VulnerabilitiesLLM漏洞概述
Red Teaming LLMs红队测试LLMs
Red Teaming at Scale大规模红队测试
Red Teaming LLMs with LLMs用LLMs进行红队测试
A Full Red Teaming Assessment全面的红队评估
Conclusion结论

课程17:JavaScript RAG Web Apps with LlamaIndex

JavaScript RAG Web Apps with LlamaIndex使用LlamaIndex的JavaScript RAG Web应用
Introduction介绍
Getting started with RAG入门RAG
Build a full-stack web app构建全栈Web应用
Advanced queries with Agents使用代理的高级查询
Production-ready techniques生产就绪技术
Conclusion结论

课程18:Efficiently Serving LLMs

Efficiently Serving LLMs高效服务LLMs
Introduction介绍
Text Generation文本生成
Batching批处理
Continuous Batching连续批处理
Quantization量化
Low-Rank Adaptation低秩适应
Multi-LoRA inference多LoRA推理
LoRAXLoRAX
Conclusion结论

课程19:Knowledge Graphs for RAG

Knowledge Graphs for RAGRAG的知识图谱
Introduction介绍
Knowledge Graph Fundamentals知识图谱基础
Querying Knowledge Graphs查询知识图谱
Preparing Text for RAG为RAG准备文本
Constructing a Knowledge Graph from Text Documents从文本文件构建知识图谱
Adding Relationships to the SEC Knowledge Graph向SEC知识图谱添加关系
Expanding the SEC Knowledge Graph扩展SEC知识图谱
Chatting with the Knowledge Graph与知识图谱聊天
Conclusion结论

课程20:Open Source Models with Hugging Face

Open Source Models with Hugging Face使用Hugging Face的开源模型
Introduction介绍
Selecting models选择模型
Natural Language Processing (NLP)自然语言处理(NLP)
Translation and Summarization翻译和摘要
Sentence Embeddings句子嵌入
Zero-Shot Audio Classification零样本音频分类
Automatic Speech Recognition自动语音识别
Text to Speech文本转语音
Object Detection目标检测
Image Segmentation图像分割
Image Retrieval图像检索
Image Captioning图像标题生成
Multimodal Visual Question Answering多模态视觉问答
Zero-Shot Image Classification零样本图像分类
Deployment部署
Conclusion结论

课程21:Prompt Engineering with Llama 2&3

Prompt Engineering with Llama 2&3使用Llama 2&3进行提示工程
Introduction介绍
Overview of Llama ModelsLlama模型概述
Getting Started with Llama 2 & 3Llama 2&3入门
Multi-turn Conversations多轮对话
Prompt Engineering Techniques提示工程技术
Comparing Different Llama 2 & 3 models比较不同的Llama 2&3模型
Code Llama代码Llama
Llama GuardLlama卫士
Walkthrough of Llama Helper Function (Optional)Llama助手函数演练(可选)
Conclusion结论

课程22:Serverless LLM Apps Amazon Bedrock

Serverless LLM Apps Amazon Bedrock使用Amazon Bedrock的无服务器LLM应用
Introduction介绍
Your first generations with Amazon Bedrock使用Amazon Bedrock生成第一个结果
Summarize an audio file总结音频文件
Enable logging启用日志记录
Deploy an AWS Lambda function部署AWS Lambda函数
Event-driven generation事件驱动生成
Conclusion结论

课程23:Building Applications with Vector Databases

Building Applications with Vector Databases使用向量数据库构建应用
Introduction介绍
Semantic Search语义搜索
Retrieval Augmented Generation (RAG)检索增强生成(RAG)
Recommender Systems推荐系统
Hybrid Search混合搜索
Facial Similarity Search面部相似性搜索
Anomaly Detection异常检测
Conclusion结论

课程24:Automated Testing for LLMOps

Automated Testing for LLMOpsLLMOps的自动化测试
Introduction介绍
Introduction to Continuous Integration (CI)持续集成(CI)介绍
Overview of Automated Evals自动评估概述
Automating Model-Graded Evals自动化模型评分评估
Comprehensive Testing Framework综合测试框架
Conclusion结论
Optional: Exploring the CircleCI config file可选:探索CircleCI配置文件

课程25:LLMOps

LLMOpsLLMOps
Introduction介绍
The Fundamentals基础知识
Data Preparation数据准备
Automation and Orchestration with Pipelines流水线的自动化和编排
Prediction, Prompts, Safety预测、提示、安全
Conclusion结论
Next Step下一步

课程26:Build LLM Apps with LangChain.js

Build LLM Apps with LangChain.js使用LangChain.js构建LLM应用程序
Introduction介绍
Building Blocks构建模块
Loading and preparing data加载和准备数据
Vectorstores and embeddings向量存储和嵌入
Question answering问答
Conversational question answering对话问答
Shipping as a web API作为Web API发布
Conclusion结论
Next Step下一步

课程27:Advanced Retrieval for AI with Chroma

Advanced Retrieval for AI with Chroma使用Chroma进行高级检索
Introduction介绍
Overview of embeddings-based retrieval基于嵌入的检索概述
Pitfalls of retrieval - when simple vector search fails检索的陷阱 - 当简单向量搜索失败时
Query Expansion查询扩展
Cross-encoder re-ranking交叉编码器重新排序
Embedding adaptors嵌入适配器
Other Techniques其他技术

课程28:Reinforcement Learning From Human Feedback

Reinforcement Learning From Human Feedback从人类反馈中进行强化学习
Introduction介绍
How does RLHF workRLHF如何工作
Datasets for RL training强化学习的数据集
Tune an LLM with RLHF使用RLHF调整LLM
Evaluate the tuned model评估调整后的模型
Google Cloud SetupGoogle Cloud设置
Conclusion结论

课程29:Building and Evaluating Advanced RAG

Building and Evaluating Advanced RAG构建和评估高级RAG
Introduction介绍
Advanced RAG Pipeline高级RAG流水线
RAG Triad of metricsRAG的三重指标
Sentence-window retrieval句子窗口检索
Auto-merging retrieval自动合并检索
Conclusion结论

课程30:Quality and Safety for LLM Applications

Quality and Safety for LLM ApplicationsLLM应用的质量和安全
Introduction介绍
Overview概览
Hallucinations幻觉
Data Leakage数据泄露
Refusals and prompt injections拒绝和提示注入
Passive and active monitoring被动和主动监控
Conclusion结论

课程31:Vector Databases: from Embeddings to Applications

Vector Databases: from Embeddings to Applications向量数据库:从嵌入到应用
Introduction介绍
How to Obtain Vector Representations of Data如何获取数据的向量表示
Search for Similar Vectors搜索相似向量
Approximate nearest neighbours近似最近邻
Vector Databases向量数据库
Sparse, Dense, and Hybrid Search稀疏、密集和混合搜索
Application - Multilingual Search应用 - 多语言搜索
Conclusion结论

课程32:Functions, Tools and Agents with LangChain

Functions, Tools and Agents with LangChain使用LangChain的函数、工具和代理
Introduction介绍
OpenAI Function CallingOpenAI函数调用
LangChain Expression Language (LCEL)LangChain表达语言(LCEL)
OpenAI Function Calling in LangChain在LangChain中调用OpenAI函数
Tagging and Extraction标记和提取
Tools and Routing工具和路由
Conversational Agent会话代理
Conclusion结论

课程33:Pair Programming with a Large Language Model

Pair Programming with a Large Language Model使用大型语言模型进行结对编程
Introduction介绍
Getting Started入门
Using a String Template使用字符串模板
Pair Programming Scenarios结对编程场景
Technical Debt技术债务
Conclusion结论

课程34:Understanding and Applying Text Embeddings

Understanding and Applying Text Embeddings理解和应用文本嵌入
Introduction介绍
Getting Started With Text Embeddings文本嵌入入门
Understanding Text Embeddings理解文本嵌入
Visualizing Embeddings可视化嵌入
Applications of Embeddings嵌入的应用
Text Generation with Vertex AI使用Vertex AI生成文本
Building a Q&A System Using Semantic Search使用语义搜索构建问答系统
Optional - Google Cloud Setup可选 - Google Cloud设置
Conclusion结论

课程35:How Business Thinkers Can Start Building AI Plugins With Semantic Kernel

How Business Thinkers Can Start Building AI Plugins With Semantic Kernel商业思考者如何使用语义内核开始构建AI插件
Introduction介绍
Semantic Kernel is Like Your AI Cooking Kitchen语义内核就像你的AI烹饪厨房
Cooking Up Flavorful SWOTs with the Kernel用内核做出美味的SWOT分析
Organizing The Tools You Make for Later Reuse组织你制作的工具以备后用
Frozen Dinner The Design Thinking Meal冷冻晚餐的设计思维餐
Dont Forget to Save the Generated Dripping or The Gravy不要忘记保存生成的油滴或肉汁
A Kitchen That Responds to Your I’m Hungry is More Than Feasible响应你的“我饿了”的厨房是完全可行的
There’s a Fully-Outfitted Professional-Grade Kitchen Ready For You有一个装备齐全的专业厨房为你准备好了
Conclusion结论

课程36:Finetuning Large Language Models

Finetuning Large Language Models微调大型语言模型
Introduction介绍
Why finetune为什么微调
Where finetuning fits in微调的适用场景
Instruction finetuning指令微调
Data preparation数据准备
Training process训练过程
Evaluation and iteration评估和迭代
Consideration on getting started now现在开始的考虑因素
Conclusion结论

课程37:Large Language Models with Semantic Search

Large Language Models with Semantic Search具有语义搜索的大型语言模型
Introduction介绍
Keyword Search关键词搜索
Embeddings嵌入
Dense Retrieval稠密检索
ReRank重新排序
Generating Answers生成答案
Conclusion结论

课程38:Evaluating and Debugging Generative AI

Evaluating and Debugging Generative AI评估和调试生成式AI
Introduction介绍
Instrument W&B工具W&B
Training a Diffusion Model with W&B使用W&B训练扩散模型
Evaluating Diffusion Models评估扩散模型
LLM Evaluation and Tracing with W&B使用W&B进行LLM评估和追踪
Finetuning a language model微调语言模型
Conclusion结论

课程39:Building Generative AI Applications with Gradio

Building Generative AI Applications with Gradio使用Gradio构建生成式AI应用
Introduction介绍
NLP Tasks interfaceNLP任务界面
Image Captioning app图像字幕应用
Image generation app图像生成应用
Describe and Generate Game描述和生成游戏
Chat with any LLM与任何LLM聊天
Conclusion结论

课程40:LangChain Chat with Your Data

LangChain Chat with Your Data使用LangChain与数据聊天
Introduction介绍
Document Loading文档加载
Document Splitting文档拆分
Vectorstores and Embedding向量存储和嵌入
Retrieval检索
Question Answering问答
Chat聊天
Conclusion结论

课程41:Building Systems with the ****** API

Building Systems with the ****** API使用****** API构建系统
Introduction介绍
Language Models, the Chat Format and Tokens语言模型、聊天格式和词元
Classification分类
Moderation审核
Chain of Thought Reasoning思维链推理
Chaining Prompts链接提示
Check Outputs检查输出
Evaluation评估
Evaluation Part I评估第一部分
Evaluation Part II评估第二部分
Summary总结

课程42:How Diffusion Models Work

How Diffusion Models Work扩散模型的工作原理
Introduction介绍
Intuition直觉
Sampling采样
Neural Network神经网络
Training训练
Controlling控制
Speeding Up加速
Summary总结
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值