量子机器学习(QML)(一):量子计算基础

这篇博客介绍了量子计算的基础知识,包括量子的概念,量子比特的叠加态和布洛赫球面表示。量子比特不同于经典比特,它们可以处于0和1的叠加状态,并可以用二维希尔伯特空间中的归一化向量表示。布洛赫球面提供了一种形象化的展示量子比特状态的方法。随着量子比特的交互和去相干,多量子比特系统可能演化为混合态,这需要使用密度矩阵来描述。
摘要由CSDN通过智能技术生成

量子机器学习(QML)(一):量子计算基础

注:转载请注明作者,本文也发布在作者个人公众号上

什么是量子?

量子是一个物理概念,即一个物理量如果存在最小的不可分割的基本单位,则这个物理量是量子化的,并把最小单位称为量子。量子是一种存在状态,而不是存在本身,即量子相当于单位(但光粒子是量子,仅此特例)。

什么是量子比特?

我们知道一个经典比特,任何时刻只能存在于一种状态,即0或1。量子比特嗯,也存在两种状态,即 ∣ 0 ⟩ |0\rang 0 ∣ 1 ⟩ |1\rang 1。不同的是,量子比特还可以处在这两种状态的叠加态。
∣ 0 ⟩ |0\rang 0 ∣ 1 ⟩ |1\rang 1究竟是什么呢?为了直观但表达,这里我采用了量子物理上传统的狄拉克表示 (bra-ket):

∣ 0 ⟩ : = [ 1 0 ] 和 ∣ 1 ⟩ : = [ 0 1 ] |0\rang:= \begin{bmatrix} 1 \\0 \end{bmatrix}和|1\rang:= \begin{bmatrix} 0 \\1 \end{bmatrix} 0:=[10]1:=[01]

后续量子机器学习的编程中,同样用这种线性代数的表达方式。此时{ ∣ 0 ⟩ |0\rang 0, ∣ 1 ⟩ |1\rang 1}都是单位正交向量,被称为正交基。
一个量子比特所有可能的态可以看作是二维希尔伯特空间中所有的归一化向量,这个希尔伯特空间的一组正规正交基正是{ ∣ 0 ⟩ |0\rang 0, ∣ 1 ⟩ |1\rang 1}。而更多的量子比特系统也同样可以由高维度的希尔伯特空间中的的单位向量表示,而这个高维希尔伯特空间的正交基就是{ ∣ 0 ⟩ |0\rang 0, ∣ 1 ⟩ |1\rang 1}的张量积。例如一个两量子比特 (2-qubit)系统可以被一个4维的希尔伯特空间里的单位复数向量表示,而这个希尔伯特空间的正规正交基是:

∣ 00 ⟩ = ∣ 0 ⟩ ⊗ ∣ 0 ⟩ : = [ 1 0 0 0 ] , ∣ 01 ⟩ = ∣ 0 ⟩ ⊗ ∣ 1 ⟩ : = [ 0 1 0 0 ] , ∣ 10 ⟩ = ∣ 1 ⟩ ⊗ ∣ 0 ⟩ : = [ 0 0 1 0 ] , ∣ 11 ⟩ = ∣ 1 ⟩ ⊗ ∣ 1 ⟩ : = [ 0 0 0 1 ] |00\rang=|0\rang\otimes|0\rang:=\begin{bmatrix} 1 \\0\\0\\0 \end{bmatrix},|01\rang=|0\rang\otimes|1\rang:=\begin{bmatrix} 0\\1\\0\\0 \end{bmatrix},|10\rang=|1\rang\otimes|0\rang:=\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix},|11\rang=|1\rang\otimes|1\rang:=\begin{bmatrix} 0 \\0\\0\\1\end{bmatrix} 00=0

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值