人工智能与机器学习----SVM算法深入探究

一、支持向量机

支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane)。

对于线性可分两类数据,支持向量机就是条直线(对于高维数据点就是一个超平面), 两类数据点中的的分割线有无数条,SVM就是这无数条中最完美的一条,怎么样才算最完美呢?就是这条线距离两类数据点越远,则当有新的数据点的时候我们使用这条线将其分类的结果也就越可信。例如下图中的三条直线都可以将A中的数据分类,那条可以有最优的分类能力呢?

1、我们需要线找到数据点中距离分割超平面距离最近的点(找最小);
2、然后尽量使得距离超平面最近的点的距离的绝对值尽量的大(求最大)。
在这里插入图片描述
这里的数据点到超平面的距离就是间隔(margin), 当间隔越大,我们这条线(分类器)也就越健壮。

那些距离分割平面最近的点就是支持向量(Support Vectors)。

二、如何找到超平面

在超平面wx+b=0确定的情况下,|wx+b|能够表示点x到距离超平面的远近,而通过观察wx+b的符号与类标记y的符号是否一致可判断分类是否正确,所以,可以用(y(w*x+b))的正负性来判定或表示分类的正确性。于此,我们便引出了函数间隔(functional margin)的概念。定义函数间隔(用γ表示)为:
在这里插入图片描述
但是这个函数间隔有个问题,就是我成倍的增加w和b的值,则函数值也会跟着成倍增加,但这个超平面没有改变。所以有函数间隔还不够,需要一个几何间隔。

几何间隔
我们把w做一个约束条件,假定对于一个点 x ,令其垂直投影到超平面上的对应点为 x0 ,w 是垂直于超平面的一个向量,为样本x到超平面的距离,如下图所示:
在这里插入图片描述

三、最大间隔分类器

对一个数据点进行分类,当超平面离数据点的“间隔”越大,分类的确信度(confidence)也越大。所以,为了使得分类的确信度尽量高,需要让所选择的超平面能够最大化这个“间隔”值。这个间隔就是下图中的Gap的一半。

在这里插入图片描述

四、编程练习

1、未经过标准化的原始数据点分布

import numpy as np
import matplotlib.pyplot as plt

from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC

iris = datasets.load_iris()

X = iris.data
y = iris.target

X = X [y<2,:2] #只取y<2的类别,也就是0 1 并且只取前两个特征
y = y[y<2] # 只取y<2的类别

# 分别画出类别0和1的点
plt.scatter(X[y==0,0],X[y==0,1],color='red') 
plt.scatter(X[y==1,0],X[y==1,1],color='blue')
plt.show()

# 标准化
standardScaler = StandardScaler()

standardScaler.fit(X) #计算训练数据的均值和方差
X_standard = standardScaler.transform(X) #再用scaler中的均值和方差来转换X,使X标准化

svc = LinearSVC(C=1e9) #线性SVM分类器
svc.fit(X_standard,y) # 训练svm

运行结果:
在这里插入图片描述
绘制这个决策边界

def plot_decision_boundary(model, axis):
    x0, x1 = np.meshgrid(
        np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1,1),
        np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1,1)
    )
    X_new = np.c_[x0.ravel(), x1.ravel()]
    y_predict = model.predict(X_new)
    zz = y_predict.reshape(x0.shape)
    from matplotlib.colors import ListedColormap
    custom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])
    plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
# 绘制决策边界
plot_decision_boundary(svc,axis=[-3,3,-3,3]) # x,y轴都在-3到3之间
# 绘制原始数据即散点图
plt.scatter(X_standard[y==0,0],X_standard[y==0,1],color='red') 
plt.scatter(X_standard[y==1,0],X_standard[y==1,1],color='blue')
plt.show()


运行结果:
在这里插入图片描述
再次实例化一个svc,并传入一个较小的 C

#C越小容错空间越大
svc2 = LinearSVC(C=0.01)
svc2.fit(X_standard,y)
plot_decision_boundary(svc2,axis=[-3,3,-3,3]) # x,y轴都在-3到3之间
# 绘制原始数据
plt.scatter(X_standard[y==0,0],X_standard[y==0,1],color='red') 
plt.scatter(X_standard[y==1,0],X_standard[y==1,1],color='blue')
plt.show()

运行结果:
在这里插入图片描述
可以很明显的看到和第一个决策边界的不同,在这个决策边界汇总,有一个红点是分类错误的,C 越小容错空间越大。

2、使用多项式特征和核函数

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
#月亮数据集
X, y = datasets.make_moons() #使用生成的数据
print(X.shape) # (100,2)
print(y.shape) # (100,)

运行结果:
在这里插入图片描述
绘制下生成的数据

plt.scatter(X[y==0,0],X[y==0,1])
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()

运行结果:
在这里插入图片描述
增加一些噪声点

X, y = datasets.make_moons(noise=0.15,random_state=777) #随机生成噪声点,random_state是随机种子,noise是方差
#分类
plt.scatter(X[y==0,0],X[y==0,1]) 
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()

运行结果:
在这里插入图片描述
通过多项式特征的SVM来对它进行分类

from sklearn.preprocessing import PolynomialFeatures,StandardScaler
from sklearn.svm import LinearSVC
from sklearn.pipeline import Pipeline
def PolynomialSVC(degree,C=1.0):
    return Pipeline([
        ("poly",PolynomialFeatures(degree=degree)),#生成多项式
        ("std_scaler",StandardScaler()),#标准化
        ("linearSVC",LinearSVC(C=C))#最后生成svm
    ])
poly_svc = PolynomialSVC(degree=3)
poly_svc.fit(X,y)
plot_decision_boundary(poly_svc,axis=[-1.5,2.5,-1.0,1.5])
plt.scatter(X[y==0,0],X[y==0,1]) 
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()

运行结果:在这里插入图片描述
使用核技巧来对数据进行处理

from sklearn.svm import SVC
def PolynomialKernelSVC(degree,C=1.0):
    return Pipeline([
        ("std_scaler",StandardScaler()),
        ("kernelSVC",SVC(kernel="poly")) # poly代表多项式特征
    ])
poly_kernel_svc = PolynomialKernelSVC(degree=3)
poly_kernel_svc.fit(X,y)
plot_decision_boundary(poly_kernel_svc,axis=[-1.5,2.5,-1.0,1.5])
plt.scatter(X[y==0,0],X[y==0,1]) 
plt.scatter(X[y==1,0],X[y==1,1])
plt.show()


运行结果:
在这里插入图片描述
这种方式也生成了一个非线性的边界。
这里 SVC(kernel=“poly”) 有个参数是 kernel ,就是核函数。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值