【菜鸡读论文】Micro-expression Recognition Based on Facial Graph Representation Learning and Facial Action

【菜鸡读论文】Micro-expression Recognition Based on Facial Graph Representation Learning and Facial Action

大家好哇!
这一周就正式开学啦,因此也要开始读论文了。快乐的寒假总会过去,现在又迎来了可怜的打工人时刻。不过上了一周课之后,倒也感觉不像周一这么排斥开学了,也可能因为今天是周五吧(所以才说出这种毫无道理的话哈哈)。
在这里插入图片描述
新的一年,也有新的目标,本猫头的目标是今年一定脱单!哈哈哈!【痴人说梦】

让我们来看看今天要读的论文吧!
这是CVPR2021年的一篇论文

在这里插入图片描述

首先让我们来总体地看一下这个网络架构图

在这里插入图片描述
输入是Onset帧和Apex帧,输入到一个运动放大网络MagNet中对运动进行放大,也就是表情运动的幅度进行放大。接下来,从中间层提取一个人脸特征表示(不是最终放大的输出),基于人脸地标landmarks取30个人脸地标,每个人脸地标取附近一个7*7的块,这就是一个人脸图(Facial Graph)。接下来把30个块拉成通道的形式,分别进行点学习(Node Learning)和边学习(Edge Learning),这个是主分支。
接下来看AU学习模块,图卷积网络需要两个输入,节点特征矩阵和表示节点之间的关系的邻接矩阵。结点特征矩阵就是选取的九个AU,原本对于每个节点应该是一个one-hot向量,作者在这里使用类似于NLP的嵌入层将其转换成一个高维向量作为节点矩阵。邻接矩阵是通过CASME2获取的各个AU之间的条件概率,接下来会详细介绍。
最后将AU学习模块和图学习模块进行融合,通过一个全连接层获得最终的表情分类结果。

对于每个子模块,接下来详细介绍。

Node Learning

所提出的深度卷积(DConv)在每个通道上独立地执行空间卷积,同时保持通道的数量不变。可以保留每个节点块的内部空间信息。我们称这个步骤为节点学习。
在这里插入图片描述

Edge Learning

下一步需要在节点块之间进行全局特征学习,即边缘学习。
Transformer的编码器Etran可以计算序列中组件之间的关系。每个节点块作为一个独立的组件被输入到Etran,然后就可以学习节点之间的关系,即边。直到这一步,整个图的表示都已经自动地从Dconv和Etran学习出来了。
在这里插入图片描述

AUFusion

下面是图卷积的公式,以及每个变量的含义。
在这里插入图片描述
因为使用的三个AUs只发生在眉毛(AOE),剩下的6个AUs只发生在嘴(AoM)。
我们可以灵活的分离特征(两个Etran分别代表两个区域),眉毛的面部特征融合眉毛区域AU特征,而嘴部面部特征融合嘴部AU特征。
如下图所示,眉毛的AUs(AoE)和嘴的AUs(AoM)取Etran中每个对应向量的点积。

在这里插入图片描述

消融实验和结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫头丁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值