第k短路径 数据结构课设 A*算法Yen算法


此次期末上机要求两点间第k短路径,总结了一下Yen算法。

基本概念

首先介绍一下偏离的概念。
在这里插入图片描述
我们考虑武汉到北京。
1,首先最短路径是武汉->郑州->石家庄->北京。
2,那么举例另一条路径武汉->郑州->太原->石家庄->北京。
3,那么第二条路径相对于第一条路径的偏离节点就是郑州,通俗讲就是分叉点。
4.偏离边就是郑州->太原。
我们不需要知道为啥他是偏离点和偏离边,只需要知道怎么做就好了。

算法核心

求第k+1短路径时
偏离点:第k短路径上除了终点的所有路径点。选取一个当前偏离点u。
不能用的点:第k短路径上当前偏离点的前面所有路径点。
不能用的边:第1短,第2短……前k短路径中所有以当前偏离点为起点的边。(目的在于得到不同于已经求出的最短路径的路径)
对u调用dijsktra算法求u到终点的最短路径和距离,那么这一条候选路径就是就是u之前的路径点拼接上dij求出来的路径,距离长度就是他们的和。
每一个偏离点求一个候选路径,最后求所有路径的最小值,输出第k短路径。

具体操作例子

1,首先调用dijsktra算法求出武汉到北京的一条最短路径,很清楚了。
武汉->郑州->石家庄->北京。
2,以这条最短路径为基础,我们去求次短路径。
(1),把最短路径的第一个点看作偏离点。(武汉)
(2),得到不能用的点(此时武汉前面没有点)和不能用的边(武汉->郑州)。
(3),调用dijsktra得到武汉到北京的最短距离,(注意此时的区别就在不能用的点和不能用的边)
(4)候选路径:武汉 合肥 济南 石家庄 北京 1388
重复1234步骤
(1)把最短路径的第二个点看作偏离点。(郑州)
(2),得到不能用的点(武汉)和不能用的边(郑州->石家庄)。
(3),调用dijsktra得到郑州到北京的最短距离。
(4)候选路径:武汉 郑州 太原 石家庄 北京 1263
(1)把最短路径的第三个点看作偏离点。(石家庄)
(2),得到不能用的点(武汉,郑州)和不能用的边(石家庄->北京)。
(3),调用dijsktra得到石家庄到北京的最短距离。
(4)候选路径:武汉 郑州 石家庄 天津 北京 1206
偏离点遍历完毕,求出第二短路径 (武汉 郑州 石家庄 天津 北京 1206)
第k短重复上面操作。

emmm我发现这里我讲的很烂,但是代码很详细有注释,看代码就能理解每一步了。

代码

结构体

struct  allpathdist
{
	int dis;//距离
	string arr[15];//路径
	allpathdist(int a = 0):dis(a)
	{
		for (int i = 0; i < 15; i++) arr[i] = " ";
	}
};

allpathdist *houxuanpath = new allpathdist[1000];//候选路径
allpathdist *finalpath = new allpathdist[1000];//最短路径

A*

void graph::Astar(graph& G, int v, int p, int k)
{
	int unavilablenode[1000];//不能走的点集合
	notedge unavilableedge[1000];//不能走的边集合
	G.singledij(G, v, p, unavilablenode, unavilableedge);//得到第一条最短路径
	finalpath[0] = houxuanpath[0];//我设置的最短路径集合和候选路径集合
	G.Btime++;//最短路径的条数
	cout << "第1条最短路径:" << endl;
	printpath(0);//输出
	clearpath(); //从候选路径集合中删除最短路径
	G.Atime--;//候选路径条数
	int kk = 1;//要求的第kk+1条最短路径
	while (kk < k)
	{
		int num = 0;
		while (finalpath[kk - 1].arr[num] != " ") num++;//k-1短路径中节点个数
		//遍历每一个偏离节点
		for (int i = 0; i < num-1; i++)
		{
			int pianli = getloc(finalpath[kk - 1].arr[i]);//偏离点的下标
			int w = 0;//起点到偏离点的距离
			for (int j = 0; j < i; j++) w += earry[getloc(finalpath[kk - 1].arr[j])][getloc(finalpath[kk - 1].arr[j + 1])];
			//1,得到不能走的节点和边,
			for (int j = 0; j < 1000; j++) unavilablenode[j] = unavilableedge[j].begin = unavilableedge[j].end = -1;//数组初始化
			for (int j = 0; j < i; j++)//不能走的节点集合
			{
				unavilablenode[j] = getloc(finalpath[kk - 1].arr[j]);
			}
			int kkk = kk;
			int edgenum = 0;
			while (kkk > 0)//不能走的边集合
			{
				num = 0;
				while (finalpath[kkk - 1].arr[num] != " ") num++;//k-1短路径中节点个数
				for (int j = 0; j < num-1; j++)
				{
					if (getloc(finalpath[kkk - 1].arr[j]) == pianli)
					{
						unavilableedge[edgenum].begin = pianli, unavilableedge[edgenum].end = getloc(finalpath[kkk - 1].arr[j + 1]);
						edgenum++;
						break;
					}
				}
				kkk--;
			}
			//2,//偏离点到终点的最短路径
			G.singledij(G, pianli, p, unavilablenode, unavilableedge);
			int numpianli=0;//偏离点到终点路径的节点数目
			houxuanpath[G.Atime - 1].dis += w;
			while(houxuanpath[G.Atime - 1].arr[numpianli] != " ") numpianli++;
			for (int j = numpianli-1; j > -1; j--) houxuanpath[G.Atime - 1].arr[j + i] = houxuanpath[G.Atime - 1].arr[j];//数组后移
			for (int j = 0; j < i; j++) houxuanpath[G.Atime - 1].arr[j] = finalpath[kk - 1].arr[j];//讲偏离点前的路径点拼接到候选路径上
			judge(G);//判断当前路径在候选路径中是否存在如果已有相同路径就删除
		}
		sortpath(houxuanpath, houxuanpath + G.Atime, cmp);//对候选路径进行排序
		finalpath[kk] = houxuanpath[0];//最短的候选路径进入最短路径集合
		G.Btime++;
		clearpath();
		G.Atime--;
		cout << "第" << kk+1 << "短路径:" << endl;
		printpath(kk);
		kk++;
	}
}

Dijsktra

void graph::singledij(graph& G, int v, int p, int unavilablenode[], notedge unavilableedge[])
{
	bool* s = new bool[numv];
	int* dist = new int[numv];
	int* path = new int[numv];
	for (int i = 0; i < numv; i++)//辅助数组的初始化
	{
		if (i == v) dist[i] = 0;
		else if (neigh[v][i] == 1) dist[i] = earry[v][i];
		else dist[i] = 32767;
		s[i] = false;
		if (i != v && dist[i] < 32767) path[i] = v;
		else path[i] = -1;
	}
	s[v] = true;
	dist[v] = 0;

	//不能走的点
	int time = 0;
	while (unavilablenode[time] > -1 && unavilablenode[time] < 34)
	{
		s[unavilablenode[time]] = true;//直接进入s集合
		time++;
	}
	//不能走的边
	time = 0;
	while (unavilableedge[time].begin != -1 && unavilableedge[time].end != -1)
	{
		dist[unavilableedge[time].end] = 32767;//当前dist置无穷表不可达
		path[unavilableedge[time].end] = -1;
		time++;
	}//下面就是dij的常规了
	for (int i = 0; i < numv - 2; i++)
	{
		int min = 32767;
		int u = v;
		for (int j = 0; j < numv; j++)
		{
			if (s[j] == false && dist[j] < min)
			{
				u = j;
				min = dist[j];
			}
		}
		if (u == v) break;//从原点出发 无法与其他节点联通 不继续进行
		(注意再注意:这里有一个很大的坑,我改了很久才发现,
		举个例子,现在dij求得是石家庄到北京的最短路径,
		而我们不能用的边是石家庄到北京和石家庄到天津,那么虽然dist[北京]dist[天津]都是无穷,
		因为北京和天津通过别的任何节点都不能加入,
		所以最后会以石家庄为原点更新dist,那么我们设置的不能走的边就没用了。
		解决办法就是找不到任何其他需要加的节点时,证明不连通就不更新dist直接break掉就ok了。
		s[u] = true;
		for (int k = 0; k < numv; k++)//更新dist[]和path[]
		{
			if (neigh[u][k] == 1)
			{
				int w = earry[u][k];
				if (s[k] == false && w < 32767 && dist[u] + w < dist[k])
				{
					dist[k] = dist[u] + w;
					path[k] = u;
				}
			}
		}
	}
	if (dist[p] == 32767) return;//偏离点到终点没有最短路径
	else//加入候选数组
	{
		houxuanpath[G.Atime].dis = dist[p];
		int kk = 0;
		int pp = p;
		while (path[pp] != -1)
		{
			pp = path[pp];
			kk++;
		}
		for (kk; kk > -1; kk--)
		{
			houxuanpath[G.Atime].arr[kk] = vlist[p].data;
			p = path[p];
		}
	}
	G.Atime++;
}

反思

自己写算法写了好久,又要调试bug,最终测试结果发现少了几条路径,原来是Yen适用无环图。
问题在于武汉到北京,武汉到天津的路都被当作不可用的边后,后面任何到达石家庄的路径都走不进不去,我一开始想法是,那不如每次只算第k-1条最短路径的偏离边,就算有重复得到的那我比对最短路径集合全删去就好了,但结果又会因为不能用的边的减少,一些其他的路径会消失。
想想也是,存在几十年的算法了,适用无环图,怎么可能让我两下解决问题呢,真是裂开。
传送门

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值