此次期末上机要求两点间第k短路径,总结了一下Yen算法。
基本概念
首先介绍一下偏离的概念。
我们考虑武汉到北京。
1,首先最短路径是武汉->郑州->石家庄->北京。
2,那么举例另一条路径武汉->郑州->太原->石家庄->北京。
3,那么第二条路径相对于第一条路径的偏离节点就是郑州,通俗讲就是分叉点。
4.偏离边就是郑州->太原。
我们不需要知道为啥他是偏离点和偏离边,只需要知道怎么做就好了。
算法核心
求第k+1短路径时
偏离点:第k短路径上除了终点的所有路径点。选取一个当前偏离点u。
不能用的点:第k短路径上当前偏离点的前面所有路径点。
不能用的边:第1短,第2短……前k短路径中所有以当前偏离点为起点的边。(目的在于得到不同于已经求出的最短路径的路径)
对u调用dijsktra算法求u到终点的最短路径和距离,那么这一条候选路径就是就是u之前的路径点拼接上dij求出来的路径,距离长度就是他们的和。
每一个偏离点求一个候选路径,最后求所有路径的最小值,输出第k短路径。
具体操作例子
1,首先调用dijsktra算法求出武汉到北京的一条最短路径,很清楚了。
武汉->郑州->石家庄->北京。
2,以这条最短路径为基础,我们去求次短路径。
(1),把最短路径的第一个点看作偏离点。(武汉)
(2),得到不能用的点(此时武汉前面没有点)和不能用的边(武汉->郑州)。
(3),调用dijsktra得到武汉到北京的最短距离,(注意此时的区别就在不能用的点和不能用的边)
(4)候选路径:武汉 合肥 济南 石家庄 北京 1388
重复1234步骤
(1)把最短路径的第二个点看作偏离点。(郑州)
(2),得到不能用的点(武汉)和不能用的边(郑州->石家庄)。
(3),调用dijsktra得到郑州到北京的最短距离。
(4)候选路径:武汉 郑州 太原 石家庄 北京 1263
(1)把最短路径的第三个点看作偏离点。(石家庄)
(2),得到不能用的点(武汉,郑州)和不能用的边(石家庄->北京)。
(3),调用dijsktra得到石家庄到北京的最短距离。
(4)候选路径:武汉 郑州 石家庄 天津 北京 1206
偏离点遍历完毕,求出第二短路径 (武汉 郑州 石家庄 天津 北京 1206)
第k短重复上面操作。
emmm我发现这里我讲的很烂,但是代码很详细有注释,看代码就能理解每一步了。
代码
结构体
struct allpathdist
{
int dis;//距离
string arr[15];//路径
allpathdist(int a = 0):dis(a)
{
for (int i = 0; i < 15; i++) arr[i] = " ";
}
};
allpathdist *houxuanpath = new allpathdist[1000];//候选路径
allpathdist *finalpath = new allpathdist[1000];//最短路径
A*
void graph::Astar(graph& G, int v, int p, int k)
{
int unavilablenode[1000];//不能走的点集合
notedge unavilableedge[1000];//不能走的边集合
G.singledij(G, v, p, unavilablenode, unavilableedge);//得到第一条最短路径
finalpath[0] = houxuanpath[0];//我设置的最短路径集合和候选路径集合
G.Btime++;//最短路径的条数
cout << "第1条最短路径:" << endl;
printpath(0);//输出
clearpath(); //从候选路径集合中删除最短路径
G.Atime--;//候选路径条数
int kk = 1;//要求的第kk+1条最短路径
while (kk < k)
{
int num = 0;
while (finalpath[kk - 1].arr[num] != " ") num++;//k-1短路径中节点个数
//遍历每一个偏离节点
for (int i = 0; i < num-1; i++)
{
int pianli = getloc(finalpath[kk - 1].arr[i]);//偏离点的下标
int w = 0;//起点到偏离点的距离
for (int j = 0; j < i; j++) w += earry[getloc(finalpath[kk - 1].arr[j])][getloc(finalpath[kk - 1].arr[j + 1])];
//1,得到不能走的节点和边,
for (int j = 0; j < 1000; j++) unavilablenode[j] = unavilableedge[j].begin = unavilableedge[j].end = -1;//数组初始化
for (int j = 0; j < i; j++)//不能走的节点集合
{
unavilablenode[j] = getloc(finalpath[kk - 1].arr[j]);
}
int kkk = kk;
int edgenum = 0;
while (kkk > 0)//不能走的边集合
{
num = 0;
while (finalpath[kkk - 1].arr[num] != " ") num++;//k-1短路径中节点个数
for (int j = 0; j < num-1; j++)
{
if (getloc(finalpath[kkk - 1].arr[j]) == pianli)
{
unavilableedge[edgenum].begin = pianli, unavilableedge[edgenum].end = getloc(finalpath[kkk - 1].arr[j + 1]);
edgenum++;
break;
}
}
kkk--;
}
//2,//偏离点到终点的最短路径
G.singledij(G, pianli, p, unavilablenode, unavilableedge);
int numpianli=0;//偏离点到终点路径的节点数目
houxuanpath[G.Atime - 1].dis += w;
while(houxuanpath[G.Atime - 1].arr[numpianli] != " ") numpianli++;
for (int j = numpianli-1; j > -1; j--) houxuanpath[G.Atime - 1].arr[j + i] = houxuanpath[G.Atime - 1].arr[j];//数组后移
for (int j = 0; j < i; j++) houxuanpath[G.Atime - 1].arr[j] = finalpath[kk - 1].arr[j];//讲偏离点前的路径点拼接到候选路径上
judge(G);//判断当前路径在候选路径中是否存在如果已有相同路径就删除
}
sortpath(houxuanpath, houxuanpath + G.Atime, cmp);//对候选路径进行排序
finalpath[kk] = houxuanpath[0];//最短的候选路径进入最短路径集合
G.Btime++;
clearpath();
G.Atime--;
cout << "第" << kk+1 << "短路径:" << endl;
printpath(kk);
kk++;
}
}
Dijsktra
void graph::singledij(graph& G, int v, int p, int unavilablenode[], notedge unavilableedge[])
{
bool* s = new bool[numv];
int* dist = new int[numv];
int* path = new int[numv];
for (int i = 0; i < numv; i++)//辅助数组的初始化
{
if (i == v) dist[i] = 0;
else if (neigh[v][i] == 1) dist[i] = earry[v][i];
else dist[i] = 32767;
s[i] = false;
if (i != v && dist[i] < 32767) path[i] = v;
else path[i] = -1;
}
s[v] = true;
dist[v] = 0;
//不能走的点
int time = 0;
while (unavilablenode[time] > -1 && unavilablenode[time] < 34)
{
s[unavilablenode[time]] = true;//直接进入s集合
time++;
}
//不能走的边
time = 0;
while (unavilableedge[time].begin != -1 && unavilableedge[time].end != -1)
{
dist[unavilableedge[time].end] = 32767;//当前dist置无穷表不可达
path[unavilableedge[time].end] = -1;
time++;
}//下面就是dij的常规了
for (int i = 0; i < numv - 2; i++)
{
int min = 32767;
int u = v;
for (int j = 0; j < numv; j++)
{
if (s[j] == false && dist[j] < min)
{
u = j;
min = dist[j];
}
}
if (u == v) break;//从原点出发 无法与其他节点联通 不继续进行
(注意再注意:这里有一个很大的坑,我改了很久才发现,
举个例子,现在dij求得是石家庄到北京的最短路径,
而我们不能用的边是石家庄到北京和石家庄到天津,那么虽然dist[北京]dist[天津]都是无穷,
因为北京和天津通过别的任何节点都不能加入,
所以最后会以石家庄为原点更新dist,那么我们设置的不能走的边就没用了。
解决办法就是找不到任何其他需要加的节点时,证明不连通就不更新dist直接break掉就ok了。
s[u] = true;
for (int k = 0; k < numv; k++)//更新dist[]和path[]
{
if (neigh[u][k] == 1)
{
int w = earry[u][k];
if (s[k] == false && w < 32767 && dist[u] + w < dist[k])
{
dist[k] = dist[u] + w;
path[k] = u;
}
}
}
}
if (dist[p] == 32767) return;//偏离点到终点没有最短路径
else//加入候选数组
{
houxuanpath[G.Atime].dis = dist[p];
int kk = 0;
int pp = p;
while (path[pp] != -1)
{
pp = path[pp];
kk++;
}
for (kk; kk > -1; kk--)
{
houxuanpath[G.Atime].arr[kk] = vlist[p].data;
p = path[p];
}
}
G.Atime++;
}
反思
自己写算法写了好久,又要调试bug,最终测试结果发现少了几条路径,原来是Yen适用无环图。
问题在于武汉到北京,武汉到天津的路都被当作不可用的边后,后面任何到达石家庄的路径都走不进不去,我一开始想法是,那不如每次只算第k-1条最短路径的偏离边,就算有重复得到的那我比对最短路径集合全删去就好了,但结果又会因为不能用的边的减少,一些其他的路径会消失。
想想也是,存在几十年的算法了,适用无环图,怎么可能让我两下解决问题呢,真是裂开。
传送门