opencv根据直线方程求交点坐标

# 均值滤波
dst_jz = cv2.blur(dst2,(9,9))
cv2.imshow("dst_sb", dst_jz)

# 高斯滤波
dst_gs = cv2.GaussianBlur(dst2,(5,5),0,0)
cv2.imshow("dst_sb", dst_gs)

# 双边滤波
dst_sb = cv2.bilateralFilter(dst2, 15, 155, 100)
cv2.imshow("dst_sb", dst_sb)

# 腐蚀
k = np.ones((9,9),np.uint8)
det_fs = cv2.erode(dst2,k)
cv2.imshow("det_fs", det_fs)

 已知两条直线四个点(两个点构成一条直线),求这两条直线的交点坐标。

# 求直线方程的参数
def equation_parameters(x0, y0, x1, y1):
    a = y0 - y1
    b = x1 - x0
    c = x0*y1 - x1*y0
    return a, b, c

# 构造直线方程并求交点
def linear_equation_point(line1, line2):
    a0, b0, c0 = equation_parameters(*line1)
    a1, b1, c1 = equation_parameters(*line2)
    D = a0 * b1 - a1 * b0
    if D == 0:
        return None
    x = (b0 * c1 - b1 * c0) / D
    y = (a1 * c0 - a0 * c1) / D
    return x, y

if __name__ == '__main__':
    line1 = [5, 5, 10, 10]
    line2 = [9, 9, 10, 0]
    cross_pt = linear_equation_point(line1, line2)
    print(cross_pt)
"""
功能:导入图片,求两直线交点,再求直线距离
"""

import cv2
import numpy as np
import math

class MainWindow():

    def __init__(self):
        super().__init__()
        img = cv2.imread("D:/Users/xuyf2/Desktop/project_C/cap_2/2cp1638667470.jpg")
        img = img[357:517, 613:779]
        # cv2.imwrite("D:/Users/xuyf2/Desktop/project_C/cap_2/" + '2'  + ".jpg", img)
        edges = self.image_processing(img)                 # 图像处理
        line_zuobiao = self.line_detection(edges)          # 寻找直线坐标

        # 求交点
        crossover_point1 = self.linear_equation_point(line_zuobiao[0], line_zuobiao[1])
        crossover_point2 = self.linear_equation_point(line_zuobiao[1], line_zuobiao[2])
        crossover_point3 = self.linear_equation_point(line_zuobiao[2], line_zuobiao[3])
        crossover_point4 = self.linear_equation_point(line_zuobiao[3], line_zuobiao[4])
        # print(list(crossover_point1),list(crossover_point2),list(crossover_point3),list(crossover_point4))

        # 求长度
        long1 = self.width_calculation(list(crossover_point1),list(crossover_point2))
        long2 = self.width_calculation(list(crossover_point3), list(crossover_point4))
        act_long1 = self.actual_width_jier(long1)
        act_long2 = self.actual_width_jier(long2)
        print('极耳像素点长度:',long1,long2)
        print('极耳实际长度:', act_long1, act_long2)

        # 画线
        self.LineAtext1(img, crossover_point1, crossover_point2, crossover_point3, crossover_point4)
        cv2.imshow("LineAtext1", img)

    # 图像处理
    def image_processing(self, img):
        # 灰度处理
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        # Otsu方法
        t2, dst2 = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
        # 中值滤波
        scr1 = cv2.medianBlur(dst2, 9)
        cv2.imshow("3", scr1)
        # 边缘检测
        edges = cv2.Canny(scr1, 150, 250, L2gradient=True)
        cv2.imshow("bianyuanjiance", edges)
        return edges

    def line_detection(self,img):
        lines = cv2.HoughLinesP(img, 1, np.pi / 180, 30, minLineLength=30, maxLineGap=30)
        zuobiaos = []
        for line in lines:
            x1, y1, x2, y2 = line[0]
            zuobiao = [x1, y1, x2, y2]
            zuobiaos.append(zuobiao)
        print('直线检测出线段数:',len(zuobiaos))
        #     cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)
        # cv2.imshow("img1", img)
        zuobiaos_new = sorted({tuple(x): x for x in zuobiaos[:]}.values())
        # print(zuobiaos_new)
        return zuobiaos_new


    # 计算两点之间长度
    def width_calculation(self,list_point1,list_point2):
        p1 = np.array(list_point1)
        p2 = np.array(list_point2)
        p3 = p2 - p1
        long = math.hypot(p3[0], p3[1])
        long = ('%.3f' % long)
        return long

    # 求直线方程的参数
    def equation_parameters(self, x0, y0, x1, y1):
        a = y0 - y1
        b = x1 - x0
        c = x0*y1 - x1*y0
        return a, b, c

    # 构造直线方程并求交点
    def linear_equation_point(self, line1, line2):
        a0, b0, c0 = self.equation_parameters(*line1)
        a1, b1, c1 = self.equation_parameters(*line2)
        D = a0 * b1 - a1 * b0
        if D == 0:
            return None
        x = (b0 * c1 - b1 * c0) / D
        y = (a1 * c0 - a0 * c1) / D
        return x, y

    # 画线
    def LineAtext1(self, image, a, b, c, d):
        line_color = (0, 0, 255)
        line_thin = 2
        cv2.line(image, (int(a[0]),int(a[1])), (int(b[0]),int(b[1])), line_color, line_thin)
        cv2.line(image, (int(c[0]),int(c[1])), (int(d[0]),int(d[1])), line_color, line_thin)
        return image

    def actual_width_jier(self, long):

        width = (16.0 * float(long)) / 89.0
        width = float('%.2f' % width)
        return width


if __name__ == '__main__':

    mainWindow = MainWindow()
    cv2.waitKey(0)
    cv2.destroyAllWindows()

### 回答1: 在Java OpenCV中,可以使用Point类表示一个点的坐标,可以使用LineSegmentDetector类检测直线,并使用line()函数获取直线端点的坐标。要计算两条直线交点,可以使用以下步骤: 1. 使用LineSegmentDetector类检测两条直线,并使用line()函数获取它们的端点坐标。 2. 根据直线的端点坐标计算直线的斜率和截距。 3. 判断两条直线是否平行,如果平行则没有交点,否则计算交点坐标。 下面是一个示例代码: ``` import org.opencv.core.*; import org.opencv.imgcodecs.Imgcodecs; import org.opencv.imgproc.Imgproc; import org.opencv.imgproc.LineSegmentDetector; public class LineIntersection { public static void main(String[] args) { // Load image and convert to gray Mat image = Imgcodecs.imread("image.jpg"); Mat gray = new Mat(); Imgproc.cvtColor(image, gray, Imgproc.COLOR_BGR2GRAY); // Detect lines Mat lines = new Mat(); LineSegmentDetector detector = Imgproc.createLineSegmentDetector(); detector.detect(gray, lines); // Calculate intersection point Point p1 = new Point(lines.get(0, 0)); Point p2 = new Point(lines.get(0, 1)); double m1 = (p2.y - p1.y) / (p2.x - p1.x); double b1 = p1.y - m1 * p1.x; Point p3 = new Point(lines.get(1, 0)); Point p4 = new Point(lines.get(1, 1)); double m2 = (p4.y - p3.y) / (p4.x - p3.x); double b2 = p3.y - m2 * p3.x; if (Math.abs(m1 - m2) < 1e-6) { System.out.println("Lines are parallel"); } else { double x = (b2 - b1) / (m1 - m2); double y = m1 * x + b1; Point intersection = new Point(x, y); System.out.println("Intersection point: " + intersection); } } } ``` 注意,这个示例代码只计算了两条直线交点,如果需要计算多条直线交点,可以使用类似的方法。 ### 回答2: 在Java中,我们可以使用OpenCV库来计算两条直线交点坐标点。下面是一个示例代码: 首先,我们需要导入OpenCV库: import org.opencv.core.CvType; import org.opencv.core.Mat; import org.opencv.core.Point; import org.opencv.core.Core; 然后,我们可以定义两条直线的参数。每条直线由斜率(k)和截距(b)表示。例如,我们有两条直线的参数为:line1(k1, b1)和line2(k2, b2)。 接下来,我们可以使用Point类来表示交点坐标。我们可以使用以下公式计算交点的x和y坐标: x = (b2 - b1) / (k1 - k2); y = k1 * x + b1; 最后,我们可以使用以下代码计算交点坐标: // 定义两条直线的参数 double k1 = 2.0; double b1 = 1.0; double k2 = -1.0; double b2 = 3.0; // 计算交点的x和y坐标 double x = (b2 - b1) / (k1 - k2); double y = k1 * x + b1; // 创建交点对象 Point intersectionPoint = new Point(x, y); 现在,我们可以使用intersectionPoint对象来访问交点的x和y坐标。例如,我们可以使用以下代码输出交点坐标: System.out.println("交点坐标:(" + intersectionPoint.x + ", " + intersectionPoint.y + ")"); 注意,以上代码仅为示例,实际应用中,你需要根据实际情况定义直线的参数,并将代码嵌入到你的项目中。希望这能帮助到你! ### 回答3: 在Java的OpenCV中,我们可以使用Point类来表示一个坐标点。要计算两条直线交点坐标点,我们可以使用直线的一般方程。 假设直线1的一般方程为Ax+By+C1=0,直线2的一般方程为Dx+Ey+C2=0。为了计算两条直线交点,我们可以进行如下步骤: 1. 计算直线1和直线2的斜率。斜率可以通过直线的一般方程的A和B系数得,可以使用以下公式计算斜率:m1 = -A/B,m2 = -D/E。 2. 判断两条直线是否平行。如果斜率m1和m2相等(或者非常接近),则两条直线平行,没有交点。 3. 如果两条直线不平行,计算交点的x和y坐标。我们可以使用以下公式计算交点的x和y坐标: x = (B*C2 - C1*E) / (A*E - B*D) y = (A*C2 - C1*D) / (B*D - A*E) 4. 将计算得到的x和y值作为Point对象的坐标值。可以使用以下代码将x和y值封装成Point对象: Point intersectionPoint = new Point(x, y); 这样,我们就可以得到两条直线交点坐标点。请注意,如果两条直线平行,则交点不存在。 希望以上解答对您有帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

凡先生的笔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值