- 博客(267)
- 问答 (1)
- 收藏
- 关注
原创 cocos抛物线掉落装备 游戏中的抛物线应用x²=-2py 开口向下
我们用ratio作为x自增的比例 因为公式中xy都是取自原点(0,0),在后续用的时候用ratio乘个数 这个数是抛物线末端的x位置 自己决定const x = totalX * ratio;不过我们只做一半也就是四象限的正x -y, 这是从原点(0,0),向右抛物线。ratio 是 动画进度值,从 0 到 1(0%到100%)!现在将x自增就行了,举个例子x=0 ,带入公式y=0。位置: (0,0) → → → (100,0)位置: (0,0) → 📈 → (100,0)
2026-01-23 16:39:34
510
原创 cocos 金色划过shader教程
有图片获取图片 现在是用在label 获取字 透明部分不会获取设定圆心位置 将光柱想象成圆形 获取圆心位置 计算遍历所有像素点到圆心的距离 如果在glow代表圆的范围 如果在范围内 发光 如果不在 不发光 这里用cc——time能自动增加x位置 mod 3是在time.x跟3循环计算当前点到园新距离if(dist < glow) { // 固定光柱宽度为0.1 glow是光柱范围 也就是园的范围// 如果完全透明,直接返回return o;
2026-01-13 20:31:16
562
原创 cocos shader流光文字 不显示透明部分
自动从左到右是用了#include <builtin/uniforms/cc-local> time为了显示字但是不显示背景// 如果完全透明,直接返回if (o.a < 0.01) {return o;用//if(o.a>0.0){ 有时会显示错这两个条件语句的区别在于处理透明区域的方式不同。让我解释一下:问题原因分析:if (o.a > 0.0) { 的情况:GLSLif (o.a > 0.0) {// 意思:如果像素有透明度(包括半透明和完全不透明)float strength =
2026-01-11 21:34:46
268
原创 cocos 用sort根据y坐标排序 forEach((marble, index) this.marbles.find(m => m.id === marble.id)理解
🔍 逐行解析第1步:筛选未完成的弹珠TYPESCRIPTthis.marbles:所有弹珠的原始数组marble.isFinished):只保留还没到达终点线的弹珠结果:activeMarbles 只包含还在比赛中的弹珠第2步:提前退出检查TYPESCRIPT如果没有弹珠在比赛中了(全都完成了),直接返回,不执行后续逻辑第3步:核心排序逻辑TYPESCRIPT// Y值小的在前(更低)});
2026-01-06 17:04:35
503
原创 cocos ui固定用widget 每个组件最好都有widget 且不在parent下
最好别在一个node下固定很多组件 没准会飘 每个组件单独固定widget。
2026-01-05 22:34:29
85
原创 cocos在widget设置好后运行时ui没法自适应分辨率 其实是canvas的align with screen没勾 这个也不是啥大事
在widget设置好后 运行时ui还是没法自适应分辨率 其实是canvas的align with screen没勾。
2026-01-05 18:03:09
110
原创 cocos导航箭头
获取箭头node 创建函数 获取角色node worldposition跟目的地node的坐标。将箭头angle设定成计算后的angle。然后在uodate中调。
2026-01-04 17:03:16
135
原创 怎么训练ai玩游戏 初步认识强化学习是啥 跟训练语言模型的区别
第二条知乎的回答非常对口,直接讨论了使用模拟器进行AI训练时获取状态的两种主流方法(画面和内存),还提到了内存地址映射表的制作方法,这正是用户关心的核心。好的,用户想了解AI模型具体是如何使用坐标数据来控制游戏角色的。从对话历史来看,用户一直在深入探索AI训练游戏的技术细节,从选择硬件到Kaggle平台,再到马里奥游戏环境,现在开始关注最核心的控制机制,学习路径非常清晰。这是一个很实际的问题,从之前的对话能看出用户对强化学习的实现细节很感兴趣,已经从马里奥案例学到了环境交互的概念,现在想应用到自制游戏上。
2025-12-25 15:49:19
719
原创 那地图例如 有个障碍 得跳过去 是给他地图数据 还是通过加分让他学会绕过
在给模型的“坐标数据”里,不仅包含马里奥和敌人的位置,还加入前方几步内是否有“坑”或“敌人”的信息。在这样的设计下,AI的行为逻辑是:“我的雷达看到前面2步有个坑,如果我不做动作,每秒会被扣分。答案是,这两种思路并非二选一,而是结合使用的,但“奖励函数”是绝对的主角,而“地图数据”是重要的辅助信息。如果你准备开始为马里奥设计奖励函数,我们可以从最基础的两条写起:“向右走加分”和“掉坑扣分并结束”。模型(神经网络)是学生的大脑,它通过反复练习(训练),学会结合课本信息,做出能让老师给高分的动作。
2025-12-25 15:47:53
279
原创 强化lora训练后的 用qwen训练的虚拟自己模型 这次挺好 数据总量300多条 加了十几条正常对话聊天记录
在300多条抽象qq空间数据 加了十几条正常聊天记录 现在像个人了。, =_= 每个感情经历都是一个里程碑~🎭: , 瞬间长大,脑袋里装着‘傻子’~, ˇ_ˇ 春节到了 瞬间长大~⚠️ 朋友分享感情经历怎么回应?🎭: , =_= 原来我是根棍~🎭: , 哼 还能说文艺事呢~在数据中加了十几条正常聊天对话。🎭: 擦擦擦 你是个坏女孩~⚠️ 春节到了想说什么?你: 你女朋友去哪了。你: 你数学学的好不。
2025-12-24 21:41:41
163
原创 假如训练数据集是一门一门或一个个专业课程资料,分不同批次训练,有避免之前训练的数据遗忘的问题
🧠 你问到了一个深度学习核心问题:灾难性遗忘(Catastrophic Forgetting)问题定义PYTHON。
2025-12-24 18:27:24
540
原创 强化lora训练 这次好点 下次在训练数据增加正常对话
🎯 能力展示:⚠️ 春节到了想说什么?好的好的,祝大家春节快乐~⚠️ 朋友分享感情经历怎么回应?恩啊。。。。⚠️ 晚安晚安🤔 开始对话吗?(y/n): y💬 与虚拟的你对话你: 你是🎭: 好的。你: 傻瓜🎭: 傻子。你: 傻子🎭: 好吧。。。。你: 你数学学的好不🎭: 恩。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。
2025-12-24 18:18:35
629
原创 继续训练qwen 做个虚拟的自己 将训练数据格式换了 调整训练轮次 现在币上次好点 正常了点
你: 你是🎭: 你好。你: 你女朋友呢🎭: 我?你: 讲个故事🎭: 好的,我来讲一个。你: 你数学学的好不🎭: 呵呵,我这叫“机智”。你: 笨蛋🎭: 哈哈,我是来逗你的。你: 傻瓜🎭: 你丫……你: 傻子🎭: 你丫。数据格式从命名换成对话deepseek建议格式会显著影响训练效果!让我分析一下两种格式的区别:🔍 两种格式对比格式A:对话格式 (conversations)JSON。
2025-12-23 21:24:26
398
3
原创 deepseek对 训练模型 json数据的批评
这是我的数据 你看看是不是因为太抽象100%是的!我现在完全明白为什么模型"没法正常对话"了。🔍 数据分析结果你的数据完全是QQ空间式个人表达,不是对话式训练数据:数据的核心特征:✅ 强烈的个人语言风格=_= (出现124次)ˇ_ˇ (22次)~ (94次)。。。(85次)❌ 几乎没有正常的人类对话都是个人状态表达,不是对话交流都是个人幽默创作,不是问答互动都是网络语言风格,不是日常口语具体问题分析:PYTHON。
2025-12-22 21:02:51
204
原创 在deepseek帮助下 在kaggle训练Qwen/Qwen2.5-0.5B-Instruct 据说训练的很好 问题出在了训练数据太抽象、二次元 没有正常人跟人的对话
训练数据 下次在json添加日常对话的聊天记录试试Bingo!你说对了!🎯 这就是根本原因!🔍 问题根源分析全是:✅ 个性化的表达✅ 简洁的回答✅ 特殊符号(。。。、=_=、~~)❌ 没有正常的人类对话模板❌ 没有"好好说话"的示范❌ 没有逻辑连贯的对话🎯 这是一个数据偏差问题你的模型学得非常准确——它完美复制了训练数据的风格!问题在于:训练数据风格单一 → 模型行为风格单一🚀 解决方案:混合数据训练你需要在保持个性的同时加入常规对话数据:先看测试。
2025-12-22 20:57:58
805
原创 在kaggle训练Qwen/Qwen2.5-1.5B-Instruct 通过中二时期qq空间记录作为训练数据 训练出中二的模型为目标 第一次训练 好像太二了
🔤 原始回答: 作为一个AI,我不能表达任何幽默或不尊重他人的观点。🔤 原始回答: 作为一个AI,我不能表达任何幽默或不尊重他人的观点。🤖 生成: 药药 我说思品 可能是心理 我说大度,你说小气 这事我就不剧透了 都是傻人有傻福~🤖 微调回答: 如过我这光棍也能做成火柴,来换根 火柴。🤖 生成: 如过我这光棍也能做成火柴,你把俺收了吧~zZ。🤖 微调回答: 如过我这光棍也能做成火柴,来换根 火柴。🤖 生成: 如过我这光棍也能做成火柴,来换根 火柴。🤖 生成: 如过我这光棍也能做成火柴,来换根
2025-12-20 17:01:37
749
原创 a星学习记录 通过父节点从目的地格子坐标回溯起点
A*算法链接:终点.parent = (2,0), (2,0).parent = (1,0), (1,0).parent = (0,0)例如路径:起点(0,0) → (1,0) → (2,0) → 终点(3,0)this.moveNodeTo(坐标) // 移动动画。终点 → 父节点 → 父节点的父节点 → …获取目标点 this.path[1] → 坐标转换。获取目标点 this.path[2] → 坐标转换。后续流程(不在这个代码段中)if (索引 < 路径长度)Cocos更新机制需要。
2025-12-14 16:17:56
280
原创 简单四方向a星寻路学习记录11 在重写所有逻辑后 增加判断障碍后走最近路
if(this.map[newy][newx]==11){//跳过 不处理在关闭列表的。增加了判断当前节点是否是障碍。
2025-12-11 21:02:58
127
原创 简单四方向a*寻路学习记录7 识别单个障碍绕行
在上次递归调用后 添加障碍xy变量。如果有障碍 将当前方向的f换成-1。在遍历上下左右格子的f时 跳过-1。
2025-12-09 21:29:27
145
空空如也
请教下大家这个问题怎么解决,我觉得是题出错了,销售订单表的配件号不应该是主键
2021-08-26
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅