利用python进行数据分析—9.数据规整:连接、联合与重塑

本文详细介绍了如何利用Python进行数据规整,包括分层索引的概念与操作,如重排序和层级排序,以及数据集的联合与合并,如数据库风格的DataFrame连接、按索引合并和轴向连接。此外,还探讨了数据的重塑和透视方法,如使用多层索引进行数据的堆叠和拆分。
摘要由CSDN通过智能技术生成

引言

  在很多应用中,数据可能分布在多个文件或数据库中,抑或以某种不易分析的格式进行排列。

9.1分层索引

  分层索引即允许在一个轴上拥有两个或两个以上索引的层级。分层索引提供了一种在更低维度的形式中处理更高维度数据的方式。
  Series对象的分层索引
在这里插入图片描述
在这里插入图片描述
  使用unstack方法将Series数据在DataFrame中重新排列,unstack的反操作是stack
在这里插入图片描述
  在DataFrame中每个轴都可以拥有分层索引,行分层索引在index参数嵌套列表,列分层索引在columns参数嵌套列表,层级名称用属性name来指定
在这里插入图片描述
在这里插入图片描述
  带有层级名称的DataFrame的列还可以用MultiIndex来创建
在这里插入图片描述

9.1.1重排序与层级排序

  重排序即重新排列轴上的层级顺序;层级排序即按照特定层级的值对数据进行排序。swaplevel方法接收两个层级序号或层级名称,返回一个进行了层级变更的对象。

Signature: pd.DataFrame.swaplevel(self, i=-2, j=-1, axis=0) -> 'DataFrame'
Docstring:
Swap levels i and j in a MultiIndex on a particular axis.

Parameters
----------
i, j : int or str
    Levels of the indices to be swapped. Can pass level name as string.

Returns
-------
DataF
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值