浅谈三角函数

本人学艺不精,如有错误,敬请指出……

如有证明上的问题,可以在评论区提出,我看到后会回答

先进一下这个网站(然后就有图了……)


基本知识

如图在 R t △ A B C Rt\triangle ABC RtABC中, ∠ C = 9 0 ∘ \angle C = 90^\circ C=90

锐角三角函数就是关于三角形三边的关系。

而锐角三角函数引申出来就变为了三角函数。

我们的角度可以为任意角,甚至大于 36 0 ∘ 360^\circ 360或者为负数。

此时如下图:

image

我们这时 a = y a=y a=y b = x b=x b=x c = r c=r c=r(其中 x x x y y y B B B点坐标, r r r是线段 A B AB AB的长度)

基本的三角函数 :

sin ⁡ α = a c \sin \alpha = \dfrac{a}{c} sinα=ca

图象:

image

cos ⁡ α = b c \cos \alpha = \dfrac{b}{c} cosα=cb

图象:

image
tan ⁡ α = a b \tan \alpha = \dfrac{a}{b} tanα=ba

图象:

image
cot ⁡ α = b a \cot \alpha = \dfrac{b}{a} cotα=ab

图象:

image
sec ⁡ α = c b \sec \alpha = \dfrac{c}{b} secα=bc

图象:

image
csc ⁡ α = c a \csc \alpha = \dfrac{c}{a} cscα=ac

图象:

image

这中间的函数中有很多相似之处,要理解透彻。

三角函数中的关系

sin ⁡ α = cos ⁡ ( 9 0 ∘ − α ) \sin \alpha = \cos (90^\circ-\alpha) sinα=cos(90α)

cos ⁡ α = sin ⁡ ( 9 0 ∘ − α ) \cos \alpha = \sin (90^\circ-\alpha) cosα=sin(90α)

sin ⁡ 2 α + cos ⁡ 2 α = 1 \sin^2 \alpha + \cos^2 \alpha = 1 sin2α+cos2α=1

tan ⁡ α ⋅ cot ⁡ α = 1 \tan \alpha \cdot \cot \alpha = 1 tanαcotα=1

tan ⁡ α = sin ⁡ α cos ⁡ α \tan \alpha = \dfrac{\sin \alpha}{\cos \alpha} tanα=cosαsinα

cot ⁡ α = cos ⁡ α sin ⁡ α \cot \alpha = \dfrac{\cos \alpha}{\sin \alpha} cotα=sinαcosα

注意:前两条一定得在锐角三角函数中才能成立。

三角函数常用公式

注意:下面公式在任意值的三角函数中都满足条件。

两角和与差

cos ⁡ ( α + β ) = cos ⁡ α ⋅ cos ⁡ β − sin ⁡ α ⋅ sin ⁡ β \cos (\alpha + \beta) = \cos \alpha \cdot \cos\beta - \sin \alpha \cdot \sin\beta cos(α+β)=cosαcosβsinαsinβ

cos ⁡ ( α − β ) = cos ⁡ α ⋅ cos ⁡ β + sin ⁡ α ⋅ sin ⁡ β \cos(\alpha-\beta)=\cos \alpha \cdot \cos\beta + \sin \alpha \cdot \sin\beta cos(αβ)=cosαcosβ+sinαsinβ

sin ⁡ ( α + β ) = sin ⁡ α ⋅ cos ⁡ β + cos ⁡ α ⋅ sin ⁡ β \sin(\alpha+\beta)=\sin\alpha\cdot\cos\beta+\cos\alpha\cdot\sin\beta sin(α+β)=sinαcosβ+cosαsinβ

sin ⁡ ( α − β ) = sin ⁡ α ⋅ cos ⁡ β − cos ⁡ α ⋅ sin ⁡ β \sin(\alpha-\beta)=\sin\alpha\cdot\cos\beta-\cos\alpha\cdot\sin\beta sin(αβ)=sinαcosβcosαsinβ

三角和与差

sin ⁡ ( α + β + γ ) = sin ⁡ α ⋅ cos ⁡ β ⋅ cos ⁡ γ + cos ⁡ α ⋅ sin ⁡ β ⋅ cos ⁡ γ + cos ⁡ α ⋅ cos ⁡ β ⋅ sin ⁡ γ − sin ⁡ α ⋅ sin ⁡ β ⋅ sin ⁡ γ \sin(\alpha+\beta+\gamma)=\sin\alpha\cdot\cos\beta\cdot\cos\gamma+\cos\alpha\cdot\sin\beta\cdot\cos\gamma+\cos\alpha\cdot\cos\beta\cdot\sin\gamma-\sin\alpha\cdot\sin\beta\cdot\sin\gamma sin(α+β+γ)=sinαcosβcosγ+cosαsinβcosγ+cosαcosβsinγsinαsinβsinγ

c o s ( α + β + γ ) = c o s α ⋅ cos ⁡ β ⋅ cos ⁡ γ − cos ⁡ α ⋅ sin ⁡ β ⋅ sin ⁡ γ − sin ⁡ α ⋅ cos ⁡ β ⋅ sin ⁡ γ − sin ⁡ α ⋅ sin ⁡ β ⋅ cos ⁡ γ cos(\alpha+\beta+\gamma)=cos\alpha\cdot\cos\beta\cdot\cos\gamma-\cos\alpha\cdot\sin\beta\cdot\sin\gamma-\sin\alpha\cdot\cos\beta\cdot\sin\gamma-\sin\alpha\cdot\sin\beta\cdot\cos\gamma cos(α+β+γ)=cosαcosβcosγcosαsinβsinγsinαcosβsinγsinαsinβcosγ

tan ⁡ ( α + β + γ ) = tan ⁡ α + tan ⁡ β + tan ⁡ γ − tan ⁡ α ⋅ tan ⁡ β ⋅ tan ⁡ γ 1 − tan ⁡ α ⋅ tan ⁡ β − tan ⁡ α ⋅ tan ⁡ γ − tan ⁡ β ⋅ tan ⁡ γ \tan(\alpha+\beta+\gamma)=\dfrac{\tan\alpha+\tan\beta+\tan\gamma-\tan\alpha\cdot\tan\beta\cdot\tan\gamma}{1-\tan\alpha\cdot\tan\beta-\tan\alpha\cdot\tan\gamma-\tan\beta\cdot\tan\gamma} tan(α+β+γ)=1tanαtanβtanαtanγtanβtanγtanα+tanβ+tanγtanαtanβtanγ

和差化积

sin ⁡ α + sin ⁡ β = 2 ⋅ sin ⁡ ( α + β 2 ) ⋅ cos ⁡ ( α − β 2 ) \sin\alpha+\sin\beta=2\cdot\sin(\dfrac{\alpha+\beta}{2})\cdot\cos(\dfrac{\alpha-\beta}{2}) sinα+sinβ=2sin(2α+β)cos(2αβ)

sin ⁡ α − sin ⁡ β = 2 ⋅ sin ⁡ ( α − β 2 ) ⋅ cos ⁡ ( α + β 2 ) \sin\alpha-\sin\beta=2\cdot\sin(\dfrac{\alpha-\beta}{2})\cdot\cos(\dfrac{\alpha+\beta}{2}) sinαsinβ=2sin(2αβ)cos(2α+β)

cos ⁡ α + cos ⁡ β = 2 ⋅ cos ⁡ ( α + β 2 ) ⋅ cos ⁡ ( α − β 2 ) \cos\alpha+\cos\beta=2\cdot\cos(\dfrac{\alpha+\beta}{2})\cdot\cos(\dfrac{\alpha-\beta}{2}) cosα+cosβ=2cos(2α+β)cos(2αβ)

cos ⁡ α − cos ⁡ β = − 2 ⋅ sin ⁡ ( α + β 2 ) ⋅ sin ⁡ ( α − β 2 ) \cos\alpha-\cos\beta=-2\cdot\sin(\dfrac{\alpha+\beta}{2})\cdot\sin(\dfrac{\alpha-\beta}{2}) cosαcosβ=2sin(2α+β)sin(2αβ)

二倍角公式

这其实就是两角和。
sin ⁡ 2 α = 2 ⋅ sin ⁡ α ⋅ cos ⁡ α = 2 tan ⁡ α + cot ⁡ α \sin 2\alpha = 2\cdot\sin\alpha\cdot\cos\alpha=\dfrac{2}{\tan\alpha+\cot\alpha} sin2α=2sinαcosα=tanα+cotα2

cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α = 2 α − 1 = 1 − 2 ⋅ sin ⁡ 2 α \cos 2\alpha = \cos^2\alpha-\sin^2\alpha=2\alpha-1=1-2\cdot\sin^2\alpha cos2α=cos2αsin2α=2α1=12sin2α

tan ⁡ 2 α = 2 ⋅ tan ⁡ α 1 − tan ⁡ 2 α \tan 2\alpha=\dfrac{2\cdot\tan\alpha}{1-\tan^2\alpha} tan2α=1tan2α2tanα

cot ⁡ 2 α = cot ⁡ 2 α − 1 2 ⋅ cot ⁡ α \cot 2\alpha=\dfrac{\cot^2\alpha-1}{2\cdot\cot\alpha} cot2α=2cotαcot2α1

sec ⁡ 2 α = sec ⁡ 2 α 1 − tan ⁡ 2 α \sec 2\alpha=\dfrac{\sec^2\alpha}{1-\tan^2\alpha} sec2α=1tan2αsec2α

半角公式

注意:正负由 α 2 \dfrac{\alpha}{2} 2α所在象限决定。
sin ⁡ ( α 2 ) = ± 1 − cos ⁡ α 2 \sin(\dfrac{\alpha}{2})=\pm\sqrt{\dfrac{1-\cos\alpha}{2}} sin(2α)=±21cosα

cos ⁡ ( a 2 ) = ± 1 + cos ⁡ α 2 \cos(\dfrac{a}{2})=\pm\sqrt{\dfrac{1+\cos\alpha}{2}} cos(2a)=±21+cosα

tan ⁡ ( α 2 ) = ± 1 − c o s α 1 + c o s α = sin ⁡ α 1 + cos ⁡ α = 1 − cos ⁡ α sin ⁡ α = csc ⁡ α − cot ⁡ α \tan(\dfrac{\alpha}{2})=\pm\sqrt{\dfrac{1-cos\alpha}{1+cos\alpha}}=\dfrac{\sin\alpha}{1+\cos\alpha}=\dfrac{1-\cos\alpha}{\sin\alpha}=\csc\alpha-\cot\alpha tan(2α)=±1+cosα1cosα =1+cosαsinα=sinα1cosα=cscαcotα

cot ⁡ ( α 2 ) = ± 1 + cos ⁡ α 1 − cos ⁡ α = 1 + cos ⁡ α sin ⁡ α = sin ⁡ α 1 − cos ⁡ α = csc ⁡ α + cot ⁡ α \cot(\dfrac{\alpha}{2})=\pm\sqrt{\dfrac{1+\cos\alpha}{1-\cos\alpha}}=\dfrac{1+\cos\alpha}{\sin\alpha}=\dfrac{\sin\alpha}{1-\cos\alpha}=\csc\alpha+\cot\alpha cot(2α)=±1cosα1+cosα =sinα1+cosα=1cosαsinα=cscα+cotα

sec ⁡ ( α 2 ) = ± 2 ⋅ sec ⁡ α sec ⁡ α + 1 \sec(\dfrac{\alpha}{2})=\pm\sqrt{\dfrac{2\cdot\sec\alpha}{\sec\alpha+1}} sec(2α)=±secα+12secα

csc ⁡ ( α 2 ) = ± 2 ⋅ sec ⁡ α sec ⁡ α − 1 \csc(\dfrac{\alpha}{2})=\pm\sqrt{\dfrac{2\cdot\sec\alpha}{\sec\alpha-1}} csc(2α)=±secα12secα

降幂公式

sin ⁡ 2 α = 1 − cos ⁡ ( 2 α ) 2 \sin^2\alpha=\dfrac{1-\cos(2\alpha)}{2} sin2α=21cos(2α)

cos ⁡ 2 α = 1 + cos ⁡ ( 2 α ) 2 \cos^2\alpha=\dfrac{1+\cos(2\alpha)}{2} cos2α=21+cos(2α)

tan ⁡ 2 α = 1 − c o s ( 2 α ) 1 + c o s ( 2 α ) \tan^2\alpha=\dfrac{1-cos(2\alpha)}{1+cos(2\alpha)} tan2α=1+cos(2α)1cos(2α)

诱导公式

太多了,我都不想打了,有时间再补,溜了溜了

三角函数常用定理

正弦定理

设在 △ A B C \triangle ABC ABC中, ∠ A \angle A A ∠ B \angle B B ∠ C \angle C C的对边边长分别是 a a a b b b c c c △ A B C \triangle_{ABC} ABC的外接圆的半径长为 r r r,则有:

sin ⁡ A a = sin ⁡ B b = sin ⁡ C c \dfrac{\sin A}{a}=\dfrac{\sin B}{b}=\dfrac{\sin C}{c} asinA=bsinB=csinC

也可表示为

a sin ⁡ A = b sin ⁡ B = c sin ⁡ C = 2 r \dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2r sinAa=sinBb=sinCc=2r

正弦定理可以用与求三角形面积:

S △ A B C = a ⋅ b ⋅ sin ⁡ C 2 = b ⋅ c ⋅ sin ⁡ A 2 = a ⋅ c ⋅ sin ⁡ A 2 S_{\triangle ABC}=\dfrac{a \cdot b \cdot \sin C}{2}=\dfrac{b \cdot c \cdot \sin A}{2}=\dfrac{a \cdot c \cdot \sin A}{2} SABC=2absinC=2bcsinA=2acsinA

余弦定理

设在 △ A B C \triangle ABC ABC中, ∠ A \angle A A ∠ B \angle B B ∠ C \angle C C的对边边长分别是 a a a b b b c c c △ A B C \triangle_{ABC} ABC,则有:

a 2 = b 2 + c 2 − 2 ⋅ b ⋅ c ⋅ cos ⁡ A a^2=b^2+c^2-2\cdot b\cdot c\cdot \cos A a2=b2+c22bccosA

b 2 = a 2 + c 2 − 2 ⋅ a ⋅ b ⋅ cos ⁡ B b^2 = a^2 + c^2 - 2 \cdot a \cdot b \cdot \cos B b2=a2+c22abcosB

c 2 = a 2 + b 2 − 2 ⋅ a ⋅ b ⋅ cos ⁡ C c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos C c2=a2+b22abcosC

也可表示为:

cos ⁡ A = ( b 2 + c 2 − a 2 ) 2 ⋅ b ⋅ c \cos A = \dfrac {(b^2 + c^2 - a^2)}{2\cdot b\cdot c} cosA=2bc(b2+c2a2)

cos ⁡ B = ( a 2 + c 2 − b 2 ) 2 ⋅ a ⋅ c \cos B = \dfrac {(a^2 + c^2 - b^2)}{2\cdot a\cdot c} cosB=2ac(a2+c2b2)

cos ⁡ C = ( a 2 + b 2 − c 2 ) 2 ⋅ a ⋅ b \cos C = \dfrac {(a^2 + b^2 - c^2)}{2\cdot a\cdot b} cosC=2ab(a2+b2c2)

正切定理

设在 △ A B C \triangle ABC ABC中, ∠ A \angle A A ∠ B \angle B B ∠ C \angle C C的对边边长分别是 a a a b b b c c c △ A B C \triangle_{ABC} ABC,则有:

a + b a − b = tan ⁡ A + B 2 tan ⁡ A − B 2 \dfrac{a+b}{a-b}=\dfrac{\tan\dfrac{A+B}{2}}{\tan\dfrac{A-B}{2}} aba+b=tan2ABtan2A+B

  • 6
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值