第四章、级数

第四章、级数

1. 级数和序列的基本性质

复数序列

设 z 0 时 一 个 复 常 数 , 如 果 任 给 ε > 0 , 可 以 找 到 一 个 正 整 数 N , 使 得 当 n > N 时 , \qquad设z_0时一个复常数,如果任给\varepsilon \gt0,可以找到一个正整数N,使得当n\gt N时, z0ε>0N使n>N
∣ z − z 0 ∣ < ε |z-z_0|\lt \varepsilon zz0<ε
那 么 我 们 说 z n 收 敛 , 记 做 lim ⁡ n → + ∞ z n = z 0 那么我们说{z_n}收敛,记做\lim\limits_{n\rightarrow +\infty}z_n=z_0 znn+limzn=z0

  • { z n } 收 敛 的 充 要 条 件 是 a n 收 敛 且 b n 收 敛 . \{z_n\}收敛的充要条件是{a_n}收敛且{b_n}收敛. {zn}anbn.

  • { z n } 收 敛 的 充 要 条 件 是 : ∀ ε > 0 , 可 以 找 到 一 个 正 整 数 N > 0 , 使 得 当 m 及 n > N 时 , \{z_n\}收敛的充要条件是:\forall \varepsilon\gt0,可以找到一个正整数N\gt0,使得当m及n\gt N时, {zn}ε>0,N>0,使mn>N
    ∣ z n − z m ∣ < ε |z_n-z_m|<\varepsilon znzm<ε

复数项级数

复 数 项 级 数 就 是 z 1 + z 2 + ⋯ + z n + … \qquad复数项级数就是z_1+z_2+\dots+z_n+\dots z1+z2++zn+
或 记 做 ∑ n = 1 + ∞ z n . 如 果 部 分 和 序 列 或记做\sum\limits_{n=1}^{+\infty}z_n.如果部分和序列 n=1+zn.
σ n = z 1 + z 2 + ⋯ + z n \sigma_n=z_1+z_2+\dots+z_n σn=z1+z2++zn
收 敛 , 那 么 我 们 说 级 数 收 敛 , 记 做 收敛,那么我们说级数收敛,记做
∑ n − 1 + ∞ z n = σ \sum\limits_{n-1}^{+\infty}z_n=\sigma n1+zn=σ

  • 级 数 收 敛 的 充 要 条 件 是 : 任 给 ε > 0 , 可 以 找 到 一 个 正 整 数 N > 0 , 使 得 当 n > N 时 , 级数收敛的充要条件是:任给\varepsilon \gt0,可以找到一个正整数N\gt0,使得当n\gt N时, ε>0N>0,使n>N
    ∣ z n + 1 + z n + 2 + … ∣ < ε . |z_{n+1}+z_{n+2}+\dots|\lt\varepsilon. zn+1+zn+2+<ε.
复变函数项级数
  • 一致收敛
    如 果 任 给 ε > 0 , 可 以 找 到 一 个 与 ε 有 关 而 与 z 无 关 的 正 整 数 N , 使 得 当 n > N , z ∈ E 时 , \qquad如果任给\varepsilon\gt0,可以找到一个与\varepsilon有关而与z无关的正整数N,使得当n\gt N,z\in E时, ε>0εzN使n>NzE
    ∣ ∑ k = 1 n f n ( z ) − f ( z ) ∣ < ε |\sum\limits_{k=1}^{n}f_n(z)-f(z)|<\varepsilon k=1nfn(z)f(z)<ε
    那 么 我 们 说 级 数 在 E 上 一 致 收 敛 于 f ( z ) 那么我们说级数在E上一致收敛于f(z) Ef(z)

定理 2.1
设 f n ( z ) 在 E 上 连 续 , 并 且 级 数 或 序 列 在 E 上 一 致 收 敛 于 f ( z ) 或 g ( z ) , 那 么 f ( z ) 或 g ( z ) 在 E 上 连 续 \qquad设f_n(z)在E上连续,并且级数或序列在E上一致收敛于f(z)或g(z),那么f(z)或g(z)在E上连续 fn(z)EEf(z)g(z)f(z)g(z)E

定理 2.2
设 f n ( z ) 在 简 单 曲 线 C 上 连 续 , 并 且 级 数 或 序 列 在 C 上 一 致 收 敛 于 f ( z ) 或 g ( z ) , 那 么 \qquad设f_n(z)在简单曲线C上连续,并且级数或序列在C上一致收敛于f(z)或g(z),那么 fn(z)线CCf(z)g(z)
∑ n = 1 + ∞ ∫ C f n ( z ) d z = ∫ C f ( z ) d z \sum\limits_{n=1}^{+\infty}\int_Cf_n(z)dz=\int_Cf(z)dz n=1+Cfn(z)dz=Cf(z)dz

lim ⁡ n → + ∞ ∫ C f n ( z ) d z = ∫ C g ( z ) d z \lim\limits_{n\rightarrow +\infty}\int_Cf_n(z)dz=\int_Cg(z)dz n+limCfn(z)dz=Cg(z)dz

定理 2.3 (魏尔斯特拉斯定理)
设 函 数 f n ( z ) 在 区 域 内 解 析 , 并 且 级 数 ∑ n = 1 + ∞ f n ( z ) 或 序 列 { f n ( z ) } 在 D 中 内 闭 一 致 收 敛 于 函 数 f ( z ) 或 g ( z ) , 那 么 f ( z ) 或 g ( z ) 在 D 内 解 析 , 并 且 在 D 内 , \qquad设函数f_n(z)在区域内解析,并且级数\sum_{n=1}^{+\infty}f_n(z)或序列\{f_n(z)\}在D中内闭一致收敛于函数f(z)或g(z),那么f(z)或g(z)在D内解析,并且在D内, fn(z)n=1+fn(z){fn(z)}Df(z)g(z)f(z)g(z)DD
f ( k ) ( z ) = ∑ n = 1 + ∞ f n ( k ) ( z ) f^{(k)}(z)=\sum\limits_{n=1}^{+\infty}f_n^{(k)}(z) f(k)(z)=n=1+fn(k)(z)

g ( k ) ( z ) = lim ⁡ n → + ∞ f n ( k ) ( z ) g^{(k)}(z)=\lim\limits_{n\rightarrow +\infty}f_n^{(k)}(z) g(k)(z)=n+limfn(k)(z)

幂级数
  • 定义
    形如:
    ∑ n = 0 + ∞ a n ( z − z 0 ) n \sum_{n=0}^{+\infty}a_n(z-z_0)^n n=0+an(zz0)n
    其中z是复变数,系数 a n a_n an是任何复常数

定理 3.1 (阿贝尔第一定理)
如 果 幂 级 数 ∑ n = 0 + ∞ a n ( z − z 0 ) n 在 z 1 收 敛 , 那 么 对 于 满 足 ∣ z − z 0 ∣ < ∣ z 1 − z 0 ∣ 的 任 何 z , 均 绝 对 收 敛 . \qquad如果幂级数\sum\limits_{n=0}^{+\infty}a_n(z-z_0)^n在z_1收敛,那么对于满足|z-z_0|\lt|z_1-z_0|的任何z,均绝对收敛. n=0+an(zz0)nz1zz0<z1z0z.

定理 3.3 如 果 下 列 条 件 之 一 成 立 : \qquad如果下列条件之一成立:
l = lim ⁡ n → + ∞ ∣ a n + 1 a n ∣ l=\lim\limits_{n\rightarrow +\infty}|\frac{a_{n+1}}{a_n}| l=n+limanan+1
l = lim ⁡ n → + ∞ ∣ a n ∣ n l=\lim\limits_{n\rightarrow +\infty}\sqrt[n]{|a_n|} l=n+limnan
那 么 当 0 < l < + ∞ 时 , 级 数 的 收 敛 半 径 R = 1 l ; 当 l = 0 时 , R = ∞ ; 当 l = + ∞ 时 , R = 0 那么当0\lt l \lt +\infty时,级数的收敛半径R=\frac{1}{l};当l=0时,R=\infty;当l=+\infty时,R=0 0<l<+R=l1;l=0R=l=+R=0

2. 泰勒展式

定理 4.1
设 函 数 f ( z ) 在 圆 盘 U : ∣ z − z 0 ∣ < R 内 解 析 , 那 么 在 U 内 . 设函数f(z)在圆盘U:|z-z_0|\lt R内解析,那么在U内. f(z)U:zz0<RU.
f ( z ) = f ( z 0 ) + f ′ ( z 0 ) 1 ! ( z − z 0 ) + f ′ ′ ( z 0 ) 2 ! ( z − z 0 ) 2 + … f(z)=f(z_0)+\frac{f'(z_0)}{1!}(z-z_0)+\frac{f''(z_0)}{2!}(z-z_0)^2+\dots f(z)=f(z0)+1!f(z0)(zz0)+2!f(z0)(zz0)2+

定理 4.2
函 数 f ( z ) 在 一 点 z 0 解 析 的 充 要 条 件 是 : 它 在 z 0 的 某 一 领 域 内 有 幂 级 数 展 式 \qquad函数f(z)在一点z_0解析的充要条件是:它在z_0的某一领域内有幂级数展式 f(z)z0z0

定理 5.1
设 函 数 f ( z ) 在 z 0 解 析 , 并 且 z 0 时 它 的 一 个 零 点 , 那 么 或 者 f ( z ) 在 z 0 的 一 个 领 域 内 恒 等 于 0 , 或 者 存 在 着 z 0 的 一 个 领 域 , 在 其 中 z 0 时 f ( z ) 的 唯 一 零 点 \qquad设函数f(z)在z_0解析,并且z_0时它的一个零点,那么或者f(z)在z_0的一个领域内恒等于0,或者存在着z_0的一个领域,在其中z_0时f(z)的唯一零点 f(z)z0z0f(z)z00z0z0f(z)

定理 6.1
如 果 f ( z ) 在 区 域 D 内 解 析 , 并 且 不 恒 等 于 零 , 那 么 f ( z ) 的 每 个 零 点 z 0 有 一 领 域 , 在 其 中 z 0 是 f ( z ) 的 唯 一 零 点 \qquad如果f(z)在区域D内解析,并且不恒等于零,那么f(z)的每个零点z_0有一领域,在其中z_0是f(z)的唯一零点 f(z)Df(z)z0z0f(z)

定理 6.2
设 函 数 f ( z ) 在 区 域 D 内 解 析 . 设 z k 是 D 内 彼 此 不 同 的 点 , 并 且 点 列 { z k } 在 D 内 有 极 限 点 . 如 果 f ( z k ) = g ( z k ) ( k = 1 , 2 , …   ) , 那 么 在 D 内 , f ( z ) = g ( z ) \qquad设函数f(z)在区域D内解析.设z_k是D内彼此不同的点,并且点列\{z_k\}在D内有极限点.如果f(z_k)=g(z_k)(k=1,2,\dots),那么在D内,f(z)=g(z) f(z)D.zkD{zk}D.f(zk)=g(zk)(k=1,2,)Df(z)=g(z)

3. 洛朗展式

定理 7.1
设 函 数 f ( z ) 在 圆 环 D : R 1 < ∣ z − z 0 ∣ < R 2 内 解 析 , 那 么 在 D 内 , \qquad设函数f(z)在圆环D:R_1\lt|z-z_0|\lt R_2内解析,那么在D内, f(z)DR1<zz0<R2D
f ( z ) = ∑ n = − ∞ + ∞ a n ( z − z 0 ) n , f(z)=\sum\limits_{n=-\infty}^{+\infty}a_n(z-z_0)^n, f(z)=n=+an(zz0)n,
其 中 , 其中,
a n = 1 2 π i ∫ γ f ( z ) ( z − z 0 ) n + 1 d z ( n = 0 , ± 1 , ± 2 , …   ) a_n=\frac{1}{2\pi i}\int_{\gamma}\frac{f(z)}{(z-z_0)^{n+1}}dz(n=0,\pm1,\pm2,\dots) an=2πi1γ(zz0)n+1f(z)dz(n=0,±1,±2,)
γ 是 圆 ∣ z − z 0 ∣ = ρ , ρ 时 满 足 R 1 < ρ < R 2 的 任 何 数 \gamma是圆|z-z_0|=\rho,\rho时满足R_1\lt \rho \lt R_2的任何数 γzz0=ρ,ρR1<ρ<R2

  • 解析函数的孤立奇点:
    设 函 数 f ( z ) 在 去 掉 圆 心 的 圆 盘 D : 0 < ∣ z − z 0 ∣ < R ( 0 < R ≤ + ∞ ) 内 确 定 并 且 解 析 , 那 么 z 0 称 为 f ( z ) 的 孤 立 奇 点 \qquad设函数f(z)在去掉圆心的圆盘D:0\lt|z-z_0|\lt R(0\lt R\leq+\infty)内确定并且解析,那么z_0称为f(z)的孤立奇点 f(z)D0<zz0<R(0<R+)z0f(z).

  • 可去奇点
    如 果 当 n = − 1 , − 2 , … 时 a n = 0 , 那 么 我 们 说 z 0 是 函 数 f ( z ) 的 可 去 奇 点 . \qquad如果当n=-1,-2,\dots时a_n=0,那么我们说z_0是函数f(z)的可去奇点. n=1,2,an=0z0f(z).

定理 8.1
设 函 数 f ( z ) 在 0 < ∣ z − z 0 ∣ < R ( 0 < R ≤ + ∞ ) 内 解 析 , 那 么 z 0 是 f ( z ) 的 可 去 奇 点 的 充 要 条 件 是 : 存 在 着 极 限 lim ⁡ z → z 0 f ( z ) = a 0 , 其 中 a 0 是 一 复 数 . \qquad设函数f(z)在0\lt|z-z_0|\lt R(0\lt R\leq+\infty)内解析,那么z_0是f(z)的可去奇点的充要条件是:存在着极限\lim\limits_{z\rightarrow z_0}f(z)=a_0,其中a_0是一复数. f(z)0<zz0<R(0<R+)z0f(z)zz0limf(z)=a0,a0.

定理 8.2
设 函 数 f ( z ) 在 0 < ∣ z − z 0 ∣ < R ( 0 < R ≤ + ∞ ) 内 解 析 , 那 么 z 0 是 f ( z ) 的 极 点 的 充 要 条 件 是 : lim ⁡ z → z 0 f ( z ) = ∞ , 其 中 a 0 是 一 复 数 . \qquad设函数f(z)在0\lt|z-z_0|\lt R(0\lt R\leq+\infty)内解析,那么z_0是f(z)的极点的充要条件是:\lim\limits_{z\rightarrow z_0}f(z)=\infty,其中a_0是一复数. f(z)0<zz0<R(0<R+)z0f(z)zz0limf(z)=,a0.

定理 8.3
设 函 数 f ( z ) 在 0 < ∣ z − z 0 ∣ < R ( 0 < R ≤ + ∞ ) 内 解 析 , 那 么 z 0 是 f ( z ) 的 本 性 奇 点 的 充 要 条 件 是 : 不 存 在 有 限 或 无 穷 的 极 限 lim ⁡ z → z 0 f ( z ) \qquad设函数f(z)在0\lt|z-z_0|\lt R(0\lt R\leq+\infty)内解析,那么z_0是f(z)的本性奇点的充要条件是:不存在有限或无穷的极限\lim\limits_{z\rightarrow z_0}f(z) f(z)0<zz0<R(0<R+)z0f(z)zz0limf(z)

  • 亚纯函数
    如 果 函 数 f ( z ) 在 有 限 复 平 面 上 除 去 有 极 点 外 , 处 处 解 析 , 那 么 它 就 称 为 一 个 亚 纯 函 数 . e . g . 1 s i n   z \qquad如果函数f(z)在有限复平面上除去有极点外,处处解析,那么它就称为一个亚纯函数.e.g.\frac{1}{sin\ z} f(z).e.g.sin z1
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值