第三章、复变函数积分

第三章、复变函数的积分

1. 柯西定理

复变函数的积分

 在简单曲线C上,以下四个式子分别有极限:
∫ C u ( x , y ) d x , ∫ C v ( x , y ) d y , ∫ C v ( x , y ) d x , ∫ C u ( x , y ) d y , \int_Cu(x,y)dx,\int_Cv(x,y)dy,\int_Cv(x,y)dx,\int_Cu(x,y)dy, Cu(x,y)dx,Cv(x,y)dy,Cv(x,y)dx,Cu(x,y)dy,

我们就说和式 ∫ C u x ( , y ) d x − v ( x , y ) d y + i ∫ C v ( x , y ) d x + u ( x , y ) d y , \int_Cux(,y)dx-v(x,y)dy+i\int_Cv(x,y)dx+u(x,y)dy, Cux(,y)dxv(x,y)dy+iCv(x,y)dx+u(x,y)dy,有极限

这一极限称为f(z)沿曲线C的积分,记做
∫ C f ( z ) d z \int_Cf(z)dz Cf(z)dz

 如果C是简单光滑曲线: x = φ ( t ) , y = ψ ( t ) ( t 0 ≤ t ≤ T ) , 且 t 0 及 T 相 应 于 z 0 及 Z , 那 么 积 分 可 以 写 成 x=\varphi(t),y=\psi(t)(t_0\leq t\leq T),且t_0及T相应于z_0及Z,那么积分可以写成 x=φ(t),y=ψ(t)(t0tT)t0Tz0Z
∫ C f ( z ) d z = ∫ t 0 T f ( z ( t ) ) z ′ ( t ) d t \int_Cf(z)dz=\int_{t_0}^{T}f(z(t))z'(t)dt Cf(z)dz=t0Tf(z(t))z(t)dt

定理

定理 1.
设 f ( z ) 是 在 凸 区 域 D 内 的 解 析 函 数 , 那 么 f ( z ) 在 D 内 有 原 函 数 设f(z)是在凸区域D内的解析函数,那么f(z)在D内有原函数 f(z)Df(z)D

定理 2.
设 f ( z ) 是 在 单 连 通 区 域 D 内 的 连 续 函 数 , 并 且 D 内 有 原 函 数 F ( z ) . 如 果 α 及 β ∈ D , 并 且 C 是 D 内 连 接 α 及 β 的 一 条 曲 线 , 那 么 \qquad设f(z)是在单连通区域D内的连续函数,并且D内有原函数F(z).如果\alpha及\beta \in D,并且C是D内连接\alpha及\beta的一条曲线,那么 f(z)DDF(z).αβD,CDαβ线
∫ C f ( z ) d z = F ( β ) − F ( α ) \int_Cf(z)dz=F(\beta)-F(\alpha) Cf(z)dz=F(β)F(α)

定理 3.
设 f ( z ) 是 单 连 通 区 域 D 内 的 解 析 函 数 . 设 C 是 D 内 任 一 条 简 单 闭 曲 线 , 那 么 \qquad设f(z)是单连通区域D内的解析函数.设C是D内任一条简单闭曲线,那么 f(z)D.CD线
∫ C f ( z ) d z = 0 \int_Cf(z)dz=0 Cf(z)dz=0
设 C 是 在 D 内 连 接 z 0 及 z 两 点 的 任 一 条 简 单 曲 线 , 那 么 沿 C 从 z 0 到 z 的 积 分 的 值 由 z 0 及 z 所 决 定 , 而 不 依 赖 于 曲 线 C 设C是在D内连接z_0及z两点的任一条简单曲线,那么沿C从z_0到z的积分的值由z_0及z所决定,而不依赖于曲线C CDz0z线沿Cz0zz0z线C ∫ z 0 z f ( z ) d z \int_{z_0}^{z}f(z)dz z0zf(z)dz

2. 柯西公式

定理 4.1
设 函 数 f ( z ) 在 单 连 通 域 D 内 解 析 , C 是 D 内 任 意 一 条 简 单 闭 曲 线 , 那 么 有 \qquad设函数f(z)在单连通域D内解析,C是D内任意一条简单闭曲线,那么有 f(z)DCD线
f ( z 0 ) = 1 2 π i ∫ C f ( z ) z − z 0 d z f(z_0)=\frac{1}{2\pi i}\int_C\frac{f(z)}{z-z_0}dz f(z0)=2πi1Czz0f(z)dz
也 可 以 表 述 为 函 数 在 z 0 处 的 值 即 为 圆 周 上 的 平 均 值 ( 令 z = r e θ i 换 元 即 可 证 明 ) 也可以表述为函数在z_0处的值即为圆周上的平均值(令z=re^{\theta i}换元即可证明) z0(z=reθi)

定理 4.1 (柯西微分公式或高阶导数公式)
在 定 理 4.1 假 设 下 , 有 \qquad在定理4.1假设下,有 4.1
f ( n ) ( z 0 ) = n ! 2 π i ∫ C f ( z ) ( z − z 0 ) n + 1 d z f^{(n)}(z_0)=\frac{n!}{2\pi i}\int_C\frac{f(z)}{(z-z_0)^{n+1}}dz f(n)(z0)=2πin!C(zz0)n+1f(z)dz

定理 5.1 (莫勒拉定理)
如 果 函 数 f ( z ) 在 区 域 D 内 连 续 , 并 且 对 于 D 内 任 意 一 条 简 单 闭 曲 线 C , 我 们 有 \qquad如果函数f(z)在区域D内连续,并且对于D内任意一条简单闭曲线C,我们有 f(z)DD线C
∫ C f ( z ) d z = 0 \int_Cf(z)dz=0 Cf(z)dz=0
那 么 f ( z ) 在 D 内 解 析 那么f(z)在D内解析 f(z)D

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值