第五章、留数

第五章、留数

1.一般理论

  • 留数定义
    把 积 分 1 2 π i ∫ C f ( z ) d z 定 义 为 函 数 f ( z ) 在 孤 立 奇 点 z 0 的 留 数 , 记 做 R e s ( f , z 0 ) 把积分\frac{1}{2\pi i}\int_Cf(z)dz定义为函数f(z)在孤立奇点z_0的留数,记做Res(f,z_0) 2πi1Cf(z)dzf(z)z0Res(f,z0)

定理 1.1
设 D 是 在 复 平 面 上 的 一 个 有 界 区 域 , 其 边 界 是 一 条 有 或 有 限 条 简 单 闭 曲 线 C . 设 函 数 f ( z ) 在 D 内 出 去 有 孤 立 奇 点 z 1 , z 2 , … , z n 外 , 在 每 一 点 都 解 析 , 并 且 它 在 C 上 每 一 点 也 解 析 . 那 么 我 们 有 \qquad设D是在复平面上的一个有界区域,其边界是一条有或有限条简单闭曲线C.设函数f(z)在D内出去有孤立奇点z_1,z_2,\dots,z_n外,在每一点都解析,并且它在C上每一点也解析.那么我们有 D线C.f(z)Dz1,z2,,znC.
∫ C f ( z ) d z = 2 π i ∑ k = 1 n R e s ( f , z k ) , \int_Cf(z)dz=2\pi i\sum\limits_{k=1}^{n}Res(f,z_k), Cf(z)dz=2πik=1nRes(f,zk),
这里沿C的积分是按关于区域D的正向取的.

  • R e s ( f , z 0 ) = 1 ( k − 1 ) ! lim ⁡ z → z 0 d k − 1 [ ( z − z 0 ) k f ( z ) ] d z k − 1 Res(f,z_0)=\frac{1}{(k-1)!}\lim\limits_{z\rightarrow z_0}\frac{d^{k-1}[(z-z_0)^kf(z)]}{dz^{k-1}} Res(f,z0)=(k1)!1zz0limdzk1dk1[(zz0)kf(z)]

2.留数计算的应用

引理 1
设 f ( z ) 是 在 闭 区 域 θ 1 ≤ A r g   z ≤ θ 2 , r 0 ≤ ∣ z ∣ < + ∞ ( r 0 ≥ 0 , 0 ≤ θ 1 < θ 2 ≤ π ) 上 连 续 的 复 变 函 数 , 并 且 设 τ r 是 以 O 为 心 、 r 为 半 径 的 圆 弧 在 着 闭 区 域 上 的 一 段 ( r ≥ r 0 ) . 如 果 当 z 在 着 闭 区 域 上 时 , \qquad设f(z)是在闭区域\theta_1\leq Arg\ z\leq\theta_2,r_0\leq|z|\lt+\infty(r_0\geq0,0\leq\theta_1\lt\theta_2\leq\pi)上连续的复变函数,并且设\tau_r是以O为心、r为半径的圆弧在着闭区域上的一段(r\geq r_0).如果当z在着闭区域上时, f(z)θ1Arg zθ2,r0z<+(r00,0θ1<θ2π)τrOr(rr0).z
lim ⁡ z → ∞ f ( z ) = 0 \lim\limits_{z\rightarrow\infty}f(z)=0 zlimf(z)=0
那 么 我 们 有 那么我们有
lim ⁡ r → + ∞ ∫ τ r f ( z ) e i z d z = 0 \lim_{r\rightarrow+\infty}\int_{\tau_r}f(z)e^{iz}dz=0 r+limτrf(z)eizdz=0

例 1

计算积分
I = ∫ 0 2 π d t a + s i n t ( a > 1 ) I=\int_0^{2\pi}\frac{dt}{a+sint}(a\gt1) I=02πa+sintdt(a>1)

例 2

计算积分
I = ∫ 0 + ∞ d x ( 1 + x 2 ) 2 I=\int_0^{+\infty}\frac{dx}{(1+x^2)^2} I=0+(1+x2)2dx

例 3

计算积分
I = ∫ 0 + ∞ c o s x x 2 + 1 d x I=\int_0^{+\infty}\frac{cosx}{x^2+1}dx I=0+x2+1cosxdx

例 4

计算积分
I = ∫ 0 + ∞ d x ( 1 + x ) x a ( 0 < a < 1 ) I=\int_0^{+\infty}\frac{dx}{(1+x)x^a}(0\lt a\lt1) I=0+(1+x)xadx(0<a<1)

例 5

计算积分
I = ∫ 0 + ∞ l n x ( 1 + x ) 3 d x I=\int_0^{+\infty}\frac{lnx}{(1+x)^3}dx I=0+(1+x)3lnxdx

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值