第二章、复变函数

本文详细介绍了复变函数的基本概念,包括极限、连续性、一致连续性和可微性的定义。解析函数的条件以及柯西黎曼条件被阐述,同时讨论了指数函数、对数函数、幂函数、余弦函数和正弦函数等初等函数的特性。这些理论构成了复变函数理论的基础。
摘要由CSDN通过智能技术生成

第二章、复变函数

1. 解析函数

极限的定义

设 函 数 w = f ( z ) 在 集 E 上 确 定 , z 0 是 E 的 一 个 聚 点 , α 是 一 个 复 常 数 . 如 果 任 给 ε > 0 , 可 以 找 到 一 个 与 ε 有 关 的 正 数 δ = δ ( ε ) > 0 , 使 得 当 z ∈ E , 并 且 0 < ∣ z − z 0 ∣ < δ 时 , \qquad设函数w=f(z)在集E上确定,z_0是E的一个聚点,\alpha是一个复常数.如果任给\varepsilon \gt0,可以找到一个与\varepsilon有关的正数\delta=\delta(\varepsilon)\gt0,使得当z\in E,并且0\lt|z-z_0|\lt \delta时, w=f(z)E,z0E,α.ε>0εδ=δ(ε)>0使zE0<zz0<δ
∣ f ( z ) − α ∣ < ε , |f(z)-\alpha|\lt \varepsilon, f(z)α<ε,

那么我们说,当z趋于 z 0 z_0 z0时,f(z)趋近于极限 α \alpha α,写作
lim ⁡ z → z 0 f ( z ) = α \lim\limits_{z\rightarrow z_0}f(z)=\alpha zz0limf(z)=α

连续的定义

 设函数 f ( z ) = u ( x , y ) + i v ( x , y ) f(z)=u(x,y)+iv(x,y) f(z)=u(x,y)+iv(x,y)在集E上确定,并且集E的聚点 z 0 ∈ E . z_0\in E. z0E.如果
lim ⁡ z → z 0 f ( z ) = f ( z 0 ) , \lim\limits_{z\rightarrow z_0}f(z)=f(z_0), zz0limf(z)=f(z0),
那么我们说f(z)在 z 0 z_0 z0连续.设f(z)在E上每一聚点连续,那么f(z)称为在集E上连续.

一致连续

∀ ε > 0 , ∃ δ > 0 , ∀ z 1 , z 2 ∈ E , 当 ∣ z 1 − z 2 ∣ < δ 时 , ∣ f ( z z ) − f ( z 2 ) ∣ < ε 恒 成 立 , 则 称 函 数 f ( z ) 在 E 上 一 致 连 续 \qquad\forall \varepsilon>0,\exists \delta>0,\forall z_1,z_2\in E,当|z_1-z_2|<\delta时,|f(z_z)-f(z_2)|<\varepsilon恒成立,则称函数f(z)在E上一致连续 ε>0,δ>0,z1,z2E,z1z2<δ,f(zz)f(z2)<ε,f(z)E
i . e . 如 果 任 给 ε > 0 , 可 以 找 到 一 个 与 ε 有 关 、 但 与 z 无 关 的 正 数 δ > 0 , 使 得 当 z 1 , z 2 ∈ E , 并 且 ∣ z 1 − z 2 ∣ < δ 时 , ∣ f ( z 1 ) − f ( z 2 ) ∣ < ε , 那 么 称 函 数 f ( z ) 在 E 上 一 致 连 续 . \qquad i.e.如果任给\varepsilon>0,可以找到一个与\varepsilon有关、但与z无关的正数\delta \gt0,使得当z_1,z_2\in E,并且|z_1-z_2|<\delta时,|f(z_1)-f(z_2)|<\varepsilon,那么称函数f(z)在E上一致连续. i.e.ε>0εzδ>0,使z1,z2E,z1z2<δf(z1)f(z2)<ε,f(z)E.

解析函数

如 果 \qquad如果
lim ⁡ z → z 0 f ( z ) − f ( z 0 ) z − z 0 \lim\limits_{z\rightarrow z_0}\frac{f(z)-f(z_0)}{z-z_0} zz0limzz0f(z)f(z0)
存 在 , 并 且 等 于 复 数 α , 那 么 就 说 f ( z ) 在 z 0 可 微 或 者 可 导 , 或 者 有 导 数 α , 记 做 f ′ ( z 0 ) . 存在,并且等于复数\alpha,那么就说f(z)在z_0可微或者可导,或者有导数\alpha,记做f'(z_0). α,f(z)z0αf(z0).

柯西黎曼条件

设 函 数 f ( z ) = u ( x , y ) + i v ( x , y ) 在 区 域 D 内 确 定 , 那 么 f ( z ) 在 点 z = x + i y ∈ \qquad设函数f(z)=u(x,y)+iv(x,y)在区域D内确定,那么f(z)在点z=x+iy\in f(z)=u(x,y)+iv(x,y)Df(z)z=x+iy D可微的充要条件

  1. 在点 z = x + i y , u ( x , y ) 及 v ( x , y ) 可 微 z=x+iy,u(x,y)及v(x,y)可微 z=x+iy,u(x,y)v(x,y)
  2. ∂ u ∂ x = ∂ v ∂ y , ∂ u ∂ y = − ∂ v ∂ x \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y},\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x} xu=yv,yu=xv

2. 初等函数

  1. 指数函数: f ( z ) = e z f(z)=e^z f(z)=ez
  2. 对数函数: f ( z ) = l n ∣ z ∣ + i A r g   z f(z)=ln|z|+iArg\ z f(z)=lnz+iArg z
    • 定义 l n ∣ z ∣ + i a r g z ( − π < a r g z ≤ π ) ln|z|+iargz(-\pi\lt argz\leq\pi) lnz+iargz(π<argzπ)为Lnz的主值,记做 l n   z ln\ z ln z
  3. 幂函数: w = z α = e α L n   z = e α l n   z e 2 k π i w=z^\alpha=e^{\alpha Ln\ z}=e^{\alpha ln\ z} e^{2k\pi i} w=zα=eαLn z=eαln ze2kπi
    • α 为 有 理 数 , 且 α = m n , 则 α 是 n 值 的 \alpha为有理数,且\alpha=\frac{m}{n},则\alpha是n值的 αα=nmαn
    • 余弦函数: c o s z = e i z + e − i z 2 cosz=\frac{e^{iz}+e^{-iz}}{2} cosz=2eiz+eiz
    • 正弦函数: s i n z = e i z − e − i z 2 i sinz=\frac{e^{iz}-e^{-iz}}{2i} sinz=2ieizeiz
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值