目录
1. 代码
# Specfiy time-averageing-interval
time_interval = '10min'
df_Tai = df.resample(time_interval)
np_Tai = np.array(df_Tai)
for i in ['2021-03-19 19:40:00', '2021-06-01 01:00:00']:
a = np_Tai[np_Tai[:, 0] == pd.to_datetime(i)][0][1]
a.to_excel(r'F:\02-data\{}.xlsx'.format(i))
2. 代码解读
这段代码的主要目的是对一个包含时间序列数据的 DataFrame 进行重采样,并提取特定时间点的数据,然后将这些数据保存到 Excel 文件中。下面是代码的详细步骤解读:
2.1. 设置重采样的时间间隔
time_interval = '10min'
这行代码定义了一个字符串 time_interval
,用来指定数据重采样的时间间隔。在这里,时间间隔设置为每10分钟。
2.2. 对 DataFrame 进行重采样
df_Tai = df.resample(time_interval)
这行代码使用 resample
方法按照 time_interval
的规则对 df
进行重采样。resample
方法返回一个 Resampler
对象,用于后续的数据处理,但这里代码有误,因为它没有调用任何聚合函数(如 mean()
或 sum()
)来完成重采样过程。
2.3. 将 Resampler 对象转换为数组
np_Tai = np.array(df_Tai)
此处尝试将 Resampler
对象转换为 NumPy 数组 np_Tai
。这是一个潜在的问题,因为直接将 Resampler
对象转换为数组并不合适。如果没有应用聚合函数,这行代码会导致错误或得到意外的结果。
2.4. 遍历特定时间点并提取数据
for i in ['2021-03-19 19:40:00', '2021-06-01 01:00:00']: # 冒号需要换为-
a = np_Tai[np_Tai[:, 0] == pd.to_datetime(i)][0][1]
a.to_excel(r'F:\02-data\{}.xlsx'.format(i))
这段循环遍历一个包含特定时间点的列表。对于列表中的每个时间点:
pd.to_datetime(i)
将字符串转换为 PandasTimestamp
对象。np_Tai[np_Tai[:, 0] == pd.to_datetime(i)][0][1]
尝试从np_Tai
数组中找到与时间点相对应的元素。这里的代码假设np_Tai
数组的第一列包含时间戳,并且第二列可能包含与这些时间戳关联的数据(尽管这并未在前文中明确实现)。- 最后,使用
to_excel
方法将找到的数据a
保存为 Excel 文件。文件保存在指定的路径,并以时间点命名。
2.5 总结
这段代码的主要意图是处理和输出特定时间点的数据,但存在几个关键问题:
df.resample(time_interval)
后没有进行有效的聚合操作。- 将
Resampler
直接转换为 NumPy 数组的尝试是不恰当的。 - 代码逻辑依赖于数组格式的细节,这些细节在代码片段中未明确定义或实现。
为了正确运行这段代码,需要确保 df
是一个正确设置时间索引的 DataFrame,并且在 resample
之后应用了适当的聚合函数。同时,需要正确处理和存储从 df_Tai
提取的数据。