python如何对resample+ndarray进行切片提取数据

1. 代码

# Specfiy time-averageing-interval
time_interval = '10min'
df_Tai = df.resample(time_interval)
np_Tai = np.array(df_Tai)

for i in ['2021-03-19 19:40:00', '2021-06-01  01:00:00']:
    a = np_Tai[np_Tai[:, 0] == pd.to_datetime(i)][0][1]
    a.to_excel(r'F:\02-data\{}.xlsx'.format(i))

2. 代码解读

这段代码的主要目的是对一个包含时间序列数据的 DataFrame 进行重采样,并提取特定时间点的数据,然后将这些数据保存到 Excel 文件中。下面是代码的详细步骤解读:

2.1. 设置重采样的时间间隔

time_interval = '10min'

这行代码定义了一个字符串 time_interval,用来指定数据重采样的时间间隔。在这里,时间间隔设置为每10分钟。

2.2. 对 DataFrame 进行重采样

df_Tai = df.resample(time_interval)

这行代码使用 resample 方法按照 time_interval 的规则对 df 进行重采样。resample 方法返回一个 Resampler 对象,用于后续的数据处理,但这里代码有误,因为它没有调用任何聚合函数(如 mean()sum())来完成重采样过程。

2.3. 将 Resampler 对象转换为数组

np_Tai = np.array(df_Tai)

此处尝试将 Resampler 对象转换为 NumPy 数组 np_Tai。这是一个潜在的问题,因为直接将 Resampler 对象转换为数组并不合适。如果没有应用聚合函数,这行代码会导致错误或得到意外的结果。

2.4. 遍历特定时间点并提取数据

for i in ['2021-03-19 19:40:00', '2021-06-01  01:00:00']:  # 冒号需要换为-
    a = np_Tai[np_Tai[:, 0] == pd.to_datetime(i)][0][1]
    a.to_excel(r'F:\02-data\{}.xlsx'.format(i))

这段循环遍历一个包含特定时间点的列表。对于列表中的每个时间点:

  • pd.to_datetime(i) 将字符串转换为 Pandas Timestamp 对象。
  • np_Tai[np_Tai[:, 0] == pd.to_datetime(i)][0][1] 尝试从 np_Tai 数组中找到与时间点相对应的元素。这里的代码假设 np_Tai 数组的第一列包含时间戳,并且第二列可能包含与这些时间戳关联的数据(尽管这并未在前文中明确实现)。
  • 最后,使用 to_excel 方法将找到的数据 a 保存为 Excel 文件。文件保存在指定的路径,并以时间点命名。

2.5 总结

这段代码的主要意图是处理和输出特定时间点的数据,但存在几个关键问题:

  1. df.resample(time_interval) 后没有进行有效的聚合操作。
  2. Resampler 直接转换为 NumPy 数组的尝试是不恰当的。
  3. 代码逻辑依赖于数组格式的细节,这些细节在代码片段中未明确定义或实现。

为了正确运行这段代码,需要确保 df 是一个正确设置时间索引的 DataFrame,并且在 resample 之后应用了适当的聚合函数。同时,需要正确处理和存储从 df_Tai 提取的数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值