Meta:将元奖励模型引入LLM对齐

在这里插入图片描述

📖标题:META-REWARDING LANGUAGE MODELS:Self-Improving Alignment with LLM-as-a-Meta-Judge
🌐来源:arXiv, 2407.19594

🛎️文章简介

🔸研究问题:在训练大语言模型(LLM)时,如何同时提升模型作为行动者(生成响应)和作为评判者(评估响应)的能力,以避免奖励信号的饱和或过度拟合。
🔸主要贡献:论文提出了一种名为Meta-Rewarding的方法,通过引入元评判者的角色来评估模型自身的评判,从而实现模型自我改进的能力。

📝重点思路

🔺相关工作

🔸RLHF:使LLM与人类价值观保持一致,大致分为与奖励模型对齐或直接基于偏好数据集对齐。
🔸用LLM进行评估:使用LLM进行评估和训练奖励模型已成为标准做法,核心在于如何构建训练数据。
🔸超级对齐:当前的对齐方法主要依赖于人类提供演示的监督微调(SFT)或来自人类反馈的强化学习(RLHF),超越人类水平的对齐则被称为超级对齐。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值