📖标题:META-REWARDING LANGUAGE MODELS:Self-Improving Alignment with LLM-as-a-Meta-Judge
🌐来源:arXiv, 2407.19594
🛎️文章简介
🔸研究问题:在训练大语言模型(LLM)时,如何同时提升模型作为行动者(生成响应)和作为评判者(评估响应)的能力,以避免奖励信号的饱和或过度拟合。
🔸主要贡献:论文提出了一种名为Meta-Rewarding的方法,通过引入元评判者的角色来评估模型自身的评判,从而实现模型自我改进的能力。
📝重点思路
🔺相关工作
🔸RLHF:使LLM与人类价值观保持一致,大致分为与奖励模型对齐或直接基于偏好数据集对齐。
🔸用LLM进行评估:使用LLM进行评估和训练奖励模型已成为标准做法,核心在于如何构建训练数据。
🔸超级对齐:当前的对齐方法主要依赖于人类提供演示的监督微调(SFT)或来自人类反馈的强化学习(RLHF),超越人类水平的对齐则被称为超级对齐。