港大:LLM密集推理检索基准BRIGHT

在这里插入图片描述

📖标题:BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval
🌐来源:arXiv, 2407.12883

🛎️文章简介

🔸研究问题:现有的检索模型,在处理需要复杂推理的查询时表现不佳。
🔸主要贡献:论文提出了了BRIGHT,这是一个真实检索场景中需要密集推理步骤的第一个检索基准。

📝重点思路

🔺相关工作

🔸检索基准:现有的信息检索(IR)数据集通常是为信息查找任务而构建的,主要围绕如问答、声明验证或实体检索等任务,并不能反映现实的检索场景。
🔸密集检索与RAG:最先进的检索系统通常使用密集模型来编码具有丰富表示的文本,随着密集生成模型的不断改进,RAG检索相关文档以帮助生成连贯的答案,本文聚焦检索而非生成。
🔸推理基准:许多基准测试旨在评估LLM的推理能力,特别是数学和编码,问答对通常来自教科书、在线资源、竞赛或领域专家。

🔺论文方案

🔸推理密集型检索任务:给定查询和检索语料库,通过一系列推理步骤,不断的检索与查询相关内容,并对问题进行分析和建模。
🔸数据构建:收集来自经济学、数学、地球科学等领域的自然用户查询,覆盖网络查询、代码和定理等检索内容。
🔸模型评测:使用LLM生成的推理步骤作为新的查询,评估了13个代表性检索模型,覆盖传统的词袋模型到大型密集检索模型。

🔎分析总结

🔸BRIGHT非常具有挑战性,现有的检索系统均表现不佳,无法进行推理密集型检索。
🔸使用LLM的推理步骤进行查询可提高性能,模型性能不佳的一个可能原因是所需的推理过程要求很高。
🔸生成的推理步骤可提高BM25性能,但对于其他模型来说效果较差,说明LLM生成的查询分布不满足模型训练分布。
🔸涉及长文档的推理密集型任务,即便减少检索池,对LLM来说仍具有挑战性。

💡个人观点

论文提出了一个需要密集推理步骤的检索基准,并分析了推理对文档关联的重要性。

附录

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值