Meta:量化LLM的不确定性

在这里插入图片描述

📖标题:Calibrating Verbal Uncertainty as a Linear Feature to Reduce Hallucinations
🌐来源:arXiv, 2503.14477

🌟摘要

🔸LLM 在提出虚假声明时也经常采用自信的语言风格。这种“过度自信的幻觉”误导用户并削弱信任。因此,实现以语言表达声明周围实际不确定性程度的能力非常重要。
🔸我们发现“语言不确定性”由 LLM 表示空间中的单个线性特征控制,并表明这与模型的实际“语义不确定性”只有适度的相关性。
🔸我们应用这种见解并表明 (1) 语义和语言不确定性之间的不匹配比单独的语义不确定性更能预测幻觉,(2)我们可以在推理时干预语言不确定性并减少短形式答案上的幻觉,平均相对减少了 32%。

🛎️文章简介

🔸研究问题:大语言模型(LLM)在生成答案时出现自信过度现象,即模型在不确定的情况下仍然给出高置信度的错误答案(幻觉)。能否通过分析语义不确定性(SU)和语言不确定性(VU)之间的错位,来减少这种幻觉现象?
🔸主要贡献:论文提出了一个新的量化框架来分析和校准语言不确定性,并引入了“机制不确定性校准”(MUC)方法,利用线性语言不确定性特征(VUF)来调节语言不确定性与语义不确定性之间的关系,从而有效减少幻觉的发生。

📝重点思路

🔸特征提取:采用均值差异技术从模型的残差流激活中识别语言不确定性特征(VUF)。
🔸数据集应用:在TriviaQA、NQ-Open和PopQA等闭卷短问答数据集上进行实验,验证VUF的有效性。
🔸不确定性量化:利用“LLM作为评判者”的方法量化语言不确定性,并与语义不确定性进行比较。
🔸幻觉检测:结合语言不确定性和语义不确定性,通过逻辑回归模型进行幻觉检测。
🔸幻觉缓解:提出机制不确定性校准(MUC),在推理时调节模型的激活,以使语言不确定性与语义不确定性更好地对齐。

🔎分析总结

🔸发现语言不确定性与语义不确定性之间存在显著错位,导致模型在生成高语义不确定性但低语言不确定性的回答时产生幻觉。
🔸应用MUC方法后,观察到幻觉率显著降低,同时保持了对正确答案的稳定置信度。
🔸VUF在不同数据集间表现出一致性,表明其可以作为通用特征来调节模型的不确定性。

💡个人观点

论文的核心是从模型残差中找出能量化不确定性的特征,并通过机制不确定性校准来解决幻觉问题。

🧩附录

在这里插入图片描述

<think>嗯,用户问的是如何部署本地的免费AI大模型。首先,我需要确定用户的需求到底是什么。可能他们想在自己的电脑或者服务器上运行一个大模型,比如类似ChatGPT那样的,但不想花钱,也不需要联网。这时候,我需要考虑不同的模型选择,比如LLaMA、Alpaca、Vicuna这些,这些模型都是开源的,可以免费使用。 接下来,用户可能对技术细节不太熟悉,所以步骤需要尽量简明易懂。首先应该介绍模型的选择,然后说明需要安装哪些工具,比如Python、PyTorch、Transformers库之类的。可能还需要提到硬件要求,毕竟大模型需要显存,尤其是GPU加速,如果用户只有CPU,可能需要推荐一些适合CPU运行的模型,或者量化版本。 然后,下载模型的部分,用户可能需要指导如何从Hugging Face Hub或者其他镜像站获取模型,特别是考虑到有些模型可能需要申请,比如LLaMA,所以需要提醒用户注意权限问题。另外,如果下载速度慢,推荐国内镜像可能会有帮助。 接着,推理部分的代码示例是必须的,但用户可能不太懂编程,所以需要代码尽量简单,并且解释每一步的作用。比如加载模型和tokenizer,处理输入,生成输出。同时,要提醒调整参数,比如max_length和temperature,这些影响生成结果的效果。 另外,部署为API可能是一个进阶需求,用户可能希望像OpenAI那样通过HTTP请求调用模型,所以介绍FastAPI和Uvicorn的使用方法,给出示例代码,并说明如何测试API。 工具推荐也很重要,比如Ollama、LM Studio这些图形化工具,对非技术用户更友好,可以简化部署过程。需要简要说明每个工具的特点,让用户根据自己的情况选择。 注意事项方面,硬件要求、模型精度(量化)、安全性和应用场景都需要涵盖。特别是安全性,本地部署虽然安全,但如果开放到公网可能会有风险,需要提醒用户。应用场景的例子能帮助用户理解适合的使用情况。 最后,总结一下步骤,确保用户有一个清晰的流程概念。可能用户是开发者,也可能是普通用户,所以需要兼顾不同层次的需求,提供多种方法,既有命令行和代码的方式,也有图形化工具的选择。 还要考虑用户可能的疑问,比如是否需要NVIDIA显卡,模型下载遇到问题怎么办,如何优化推理速度等等。虽然用户没有直接问,但在回答中适当提及这些点会更有帮助。总之,整个思考过程需要围绕如何让用户顺利地在本地部署免费AI大模型,提供详细的步骤和贴心的建议。</think>部署本地免费的 AI 大模型(如开源模型)通常需要以下步骤。这里以常见的 **LLM(Large Language Model)** 为例,例如 Meta 的 LLaMA、Alpaca、Vicuna 或国内的 ChatGLM-6B 等模型: --- ### **1. 选择适合的模型** - **推荐模型**: - **LLaMA** / **Alpaca**:Meta 开源的基础模型,需自行微调。 - **Vicuna**:基于 LLaMA 微调的对话模型,效果接近 ChatGPT。 - **ChatGLM-6B**:清华开源的 62 亿参数中英双语模型,支持 CPU 推理。 - **Falcon** / **BLOOM**:其他开源大模型。 - **Mistral-7B**:性能优异的小规模模型。 - **模型来源**:Hugging Face Hub(需注册)、GitHub 仓库或国内镜像站。 --- ### **2. 准备环境** #### **硬件要求** - **显存**:至少 8GB(如 7B 模型需 8-10GB,13B 模型需 16GB 以上)。 - **CPU**:若无 GPU,需选择支持 CPU 推理的模型(如 ChatGLM-6B 的量化版本),但速度较慢。 #### **软件依赖** - **Python**:安装 3.8 以上版本。 - **深度学习框架**:PyTorch、TensorFlow(推荐 PyTorch)。 - **依赖库**:`transformers`, `accelerate`, `sentencepiece` 等。 ```bash pip install torch transformers accelerate ``` --- ### **3. 下载模型** #### **方式一:Hugging Face Hub** - 通过 `git clone` 或 `snapshot_download` 下载: ```python from huggingface_hub import snapshot_download snapshot_download(repo_id="meta-llama/Llama-2-7b-chat-hf") ``` > **注意**:部分模型(如 LLaMA)需申请权限,需填写 Hugging Face 表格。 #### **方式二:国内镜像** - 若下载速度慢,可使用国内镜像站(如阿里云、魔搭社区)或网盘资源。 --- ### **4. 运行推理** #### **示例代码(以 ChatGLM-6B 为例)** ```python from transformers import AutoTokenizer, AutoModel # 加载模型和分词器 model_path = "THUDM/chatglm-6b-int4" # 量化版本(显存需求更低) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda() # 输入提示词 prompt = "你好,介绍一下你自己。" response, history = model.chat(tokenizer, prompt, history=[]) print(response) ``` #### **调整参数** - `max_length`:生成文本的最大长度。 - `temperature`:控制生成结果的随机性(值越小输出越确定)。 --- ### **5. 部署为本地 API** 若需通过 HTTP 调用模型,可使用 `FastAPI` 或 `Flask`: ```python from fastapi import FastAPI from pydantic import BaseModel app = FastAPI() class Request(BaseModel): prompt: str @app.post("/generate") def generate_text(request: Request): response, _ = model.chat(tokenizer, request.prompt) return {"response": response} # 启动服务 if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000) ``` 运行后通过 `http://localhost:8000/generate` 发送 POST 请求即可调用。 --- ### **6. 进阶工具推荐** - **Ollama**:一键部署本地大模型(支持 LLaMA、Mistral 等)。 - **LM Studio**:图形化工具,无需代码直接运行本地模型。 - **Text Generation WebUI**:类似 ChatGPT 的网页界面,支持多模型加载。 --- ### **注意事项** 1. **硬件限制**:大模型对显存要求高,可尝试量化版本(如 4-bit 或 8-bit 量化)。 2. **模型精度**:量化模型会损失部分效果,但显著降低资源占用。 3. **安全性**:本地部署不依赖网络,但需注意模型本身的安全性。 4. **应用场景**:适合私有数据问答、内部知识库等对隐私要求高的场景。 --- 通过以上步骤,你可以基于开源模型在本地搭建一个免费的 AI 大模型服务。如果需要更详细的操作指南,可以提供具体模型名称进一步解答!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值