
📖标题:Matrix: Peer-to-Peer Multi-Agent Synthetic Data Generation Framework
🌐来源:arXiv, 2511.21686
🌟摘要
合成数据对于训练大型语言模型变得越来越重要,尤其是当真实数据稀缺、昂贵或隐私敏感时。许多这样的生成任务需要协调的多智能体工作流,其中专门的代理协作生成更高质量的、更多样化和结构更丰富的数据。然而,现有的多智能体合成框架通常依赖于集中式协调器,创建可伸缩性瓶颈,或者针对特定领域硬编码,限制了灵活性。我们提出了 Matrix,这是一个去中心化框架,它将控制和数据流表示为通过分布式队列的序列化消息。这种点对点设计消除了中央协调器。每个任务通过轻量级代理独立进行,而计算密集型操作,如LLM推理或容器化环境,由分布式服务处理。矩阵建立在Ray的基础上,扩展到数万个并发代理工作流,并提供了模块化、可配置的设计,可以轻松适应广泛的数据生成工作流。我们在客户服务环境中评估各种合成场景的矩阵,例如多智能体协作对话、基于网络的推理数据提取和工具使用轨迹生成。在所有情况下,Matrix 在相同的硬件资源下实现了 2-15 倍的数据生成吞吐量,而不会损害输出质量。
🛎️文章简介
🔸研究问题:如何构建一个可扩展的、多智能体的合成数据生成框架,以满足大规模数据生成的需求?
🔸主要贡献:论文提出了一种名为Matrix的对等多智能体框架,通过去中心化的控制和数据流管理,实现了高效的大规模合成数据生成。
📝重点思路
🔸开发了Matrix框架,采用模块化设计,以支持多种数据生成任务。
🔸实现了对等(P2P)通信结构,允许智能体在任务执行中相互协作,避免了传统集中式架构的瓶颈。
🔸通过行级调度优化任务执行顺序,提高GPU资源利用率,减少延迟,并增强系统的可扩展性。
🔸引入并行执行策略,包括数据并行、任务并行和智能体并行,最大限度地发挥了计算资源的潜力。
🔸构建了分布式服务层,支持复杂的智能体工作流和容器化环境的无缝协作。
🔎分析总结
🔸实验结果表明,Matrix在各类情况下实现了比传统方法高出2到15倍的吞吐量,同时保持了输出数据的质量。
🔸通过与现有基线(如Tau2-agent)的比较,Matrix展示了其在处理上万同时运行任务时的高效性和低延迟。
🔸行级调度与批量处理相比能显著提高任务的执行效率,减少因任务执行时间不一致带来的资源闲置情况。
🔸在高负载情况下,Matrix展示了强大的容错能力和稳定性,可以在出现节点故障时自动调整任务调度。
💡个人观点
论文的创新点在于其去中心化的结构和高度模块化的设计,使得其可以灵活适应不同的数据生成需求。
🧩附录

Matrix:去中心化多智能体数据合成框架
1160

被折叠的 条评论
为什么被折叠?



