深度卷积网络采用“端对端”的特征学习,通过多层处理机制揭示隐藏于数据中的非线性特征,能够从大量训练集中自动学习全局特征,是其在遥感影像自动目标识别取得成功的重要原因,也标志特征模型从手工特征向学习特征转变。另一方面,随着深度学习的不断发展,当前以Transformer等结构为基础模型的检测模型也发展迅速,在许多应用场景下甚至超过了原有的以CNN为主的检测模型。使广大学者能理解卷积神经网络到Transformer的相关算法,掌握利用PyTorch为基础的遥感图像目标检测等应用。
遥感影像目标检测流程通常包括以下几个关键步骤:
1. 数据收集与预处理
●数据收集:从卫星、无人机等平台获取遥感影像数据
●图像增强:通过对比度调整、去噪等方法提高图像质量
●归一化:将像素值标准化到[0, 1]或[-1, 1]范围,便于模型处理
●标注:为影像中的目标添加标签和边界框,生成标注文件(如XML、JSON格式)2. 模型选择
●选择模型:根据任务需求选择合适的深度学习模型,如Faster R-CNN、YOLO、SSD等
●预训练模型:使用在大规模数据集上预训练的模型进行迁移学习,加速训练过程并提高模型性能3. 模型训练
●数据划分:将数据集划分为训练集、验证集和测试集,常用比例为70%训练、15%验证、15%测试
●训练模型:使用训练集数据训练模型,通过反向传播算法调整模型参数,最小化损失函数
●验证模型:使用验证集评估模型性能,防止过拟合,调整模型结构或参数4. 模型评估
●评估指标:使