CNN结合Transformer
【CNN+Transformer】这个研究方向通过结合卷积神经网络(CNN)的局部特征提取能力和Transformer的全局上下文建模优势,旨在提升模型对数据的理解力。这一方向在图像处理、自然语言处理等多个领域展现出强大的应用潜力,特别是在需要同时考虑细节和整体信息的任务中。通过融合两种网络结构,研究者能够设计出更为高效和准确的模型,以解决传统单一网络结构难以处理的复杂问题。此研究方向的发展不仅推动了深度学习技术的进步,也为实际应用提供了更丰富的解决方案。近年来,无数的研究者们对CNN结合Transformer这个领域的进行了大量研究,并产出了大量的学术成果。
1、SCTNet: Single-Branch CNN with Transformer Semantic Information for Real-Time Segmentation
方法
- SCTNet架构:提出了一种单分支卷积神经网络(CNN),该网络在训练时利用transformer作为语义分支来提取丰富的长距离上下文信息,而在推理时仅部署单分支CNN。
- CFBlock:设计了一种称为CFBlock(ConvFormer Block)的transformer-like CNN块,使用仅卷积操作模拟transformer块的结构,以学习transformer分支的语义信息。
- Semantic Information Alignment Module (SIAM):提出了一种语义信息对齐模块,包括Backbone Feature Alignment (BFA)和Shared Decode