第一道计算几何
改革春风吹满地
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 38593 Accepted Submission(s): 19859
Problem Description
“ 改革春风吹满地,
不会AC没关系;
实在不行回老家,
还有一亩三分地。
谢谢!(乐队奏乐)”
话说部分学生心态极好,每天就知道游戏,这次考试如此简单的题目,也是云里雾里,而且,还竟然来这么几句打油诗。
好呀,老师的责任就是帮你解决问题,既然想种田,那就分你一块。
这块田位于浙江省温州市苍南县灵溪镇林家铺子村,多边形形状的一块地,原本是linle 的,现在就准备送给你了。不过,任何事情都没有那么简单,你必须首先告诉我这块地到底有多少面积,如果回答正确才能真正得到这块地。
发愁了吧?就是要让你知道,种地也是需要AC知识的!以后还是好好练吧…
Input
输入数据包含多个测试实例,每个测试实例占一行,每行的开始是一个整数n(3<=n<=100),它表示多边形的边数(当然也是顶点数),然后是按照逆时针顺序给出的n个顶点的坐标(x1, y1, x2, y2… xn, yn),为了简化问题,这里的所有坐标都用整数表示。
输入数据中所有的整数都在32位整数范围内,n=0表示数据的结束,不做处理。
Output
对于每个测试实例,请输出对应的多边形面积,结果精确到小数点后一位小数。
每个实例的输出占一行。
Sample Input
3 0 0 1 0 0 1
4 1 0 0 1 -1 0 0 -1 0
Sample Output
0.5 2.0
根据题意:
给你边数,和坐标,然后让你输出对应多边形的面积。
思路:先由坐标求三角形,然后多个三角形组合成多边形。
原理:
利用了已知三角形的三个顶点的坐标求面积的方法。
已知直角坐标系3点p(a,b),m(c,d),n(e,f) 求三角形pmn面积的表达式!
解:
无论三角形的顶点位置如何,△PMN总可以用一个直角梯形(或矩形)和两个直角三角形面积的和差来表示
而在直角坐标系中,已知直角梯形和直角三角形的顶点的坐标,其面积是比较好求的。
下面以一种情形来说明这个方法,其它情形方法一样,表达式也一样(表达式最好加上绝对值,确保是正值)
如图情形(P在上方,M在左下,N在右下),过P作X轴的平行线L,作MA⊥L,NB⊥L(设P在A、B之间)
则A、B的坐标是A(c,b),B(e,b)
所以PA=a-c,PB=e-a,AM=b-d,BN=b-f,AB=e-c
所以S△PMN=S梯形AMNB-S△PAM-S△PBN
=(b-d+b-f)(e-c)/2-(b-d)(a-c)/2-(b-f)(e-a)/2
=(ad+be+cf-af-bc-de)/2
即:
三角形三顶点坐标分别为A(a,b),B(c,d),C(e,f),那么这个三角形的面积为
S=1/2*三阶行列式,
三阶行列式为:
a b 1
c d 1
e f 1
多变形面积=(n[边数]-2)个三角形面积;
ad+cf+be-ed-cb-af
注:这里的a与b恒为x[0],y[0]
详细代码如下
#include<set>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
double x[100],y[100];
float calc(int a,int b,int c,int d,int e,int f)
{
return (a*d+c*f+e*b-e*d-a*f-b*c)/2.0;
}
int main()
{
ios::sync_with_stdio(false);
int n;
while(cin>>n&&n){
for(int i=0;i<n;i++)
cin>>x[i]>>y[i];
float ans=0.0;
for(int i=0;i<n-2;i++){
ans+=calc(x[0],y[0],x[i+1],y[i+1],x[i+2],y[i+2]);
}
printf("%.1f\n",ans);
}
return 0;
}