阅读笔记 | 2D+3D数据融合的目标检测算法近年代表作

本文深入探讨了近年来2D+3D数据融合在目标检测算法中的应用,包括PointPainting、TransFusion和LoGoNet等方法。PointPainting通过将图像语义分割结果叠加到点云上,实现序列融合。TransFusion利用Transformer进行LiDAR-Camera融合,以应对传感器配准问题。LoGoNet则提出局部到全局的跨模态融合策略,增强特征信息。这些工作在3D物体检测上取得了显著进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:PCIPG-NaiveGeng  | 来源:计算机视觉工坊

在公众号「计算机视觉工坊」后台,回复「原论文」即可获取论文pdf和代码。

添加微信:dddvisiona,备注:目标检测,拉你入群。文末附行业细分群。

图片

PointPainting: Sequential Fusion for 3D Object Detection(CVPR2020)

1.简介

3D物体目标检测任务最好采用哪种传感器?Camera还是Lidar?不同团队给出了不同的答案。Camera和Lidar作为目标检测领域的两大巨头传感器,各有优缺点:图像的分辨率比较高,纹理信息比较丰富,但深度信息相对模糊;点云的空间信息、深度信息比较准确丰富,但数据往往比较稀疏、不够完整。由于两种传感器在一些方面存在互补关系,所以很多人相信我们可以利用多模态的方案来实现强强联合,开创1+1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值