【NLP】句法分析一

任务:句法分析(syntactic parsing)的任务就是识别句子的句法结构(syntactic structure)。

类型:

短语结构分析(Phrase parsing)

  • 完全句法分析(Full parsing)
  • 局部句法分析(Partial parsing)

依存句法分析(Dependency parsing)

短语结构分析

目标:实现高正确率、高鲁棒性(robustness)、高速度的自动句法分析过程。

困难:自然语言中存在大量的复杂的结构歧义(structural ambiguity)。

线图分析法

三种策略

  • 自底向上(Bottom-up)
  • 从上到下(Top-down)
  • 从上到下和从下到上结合

CYK分析算法

优点:简单易行,执行效率高

弱点:必须对文法进行范式化处理、无法区分歧义

概率上下文无关文法

PCFG的三个问题

  1. 内向算法或外向算法解决第一个问题,即快速地计算句子的句法树概率
  2. Viterbi算法解决第二个问题,即最佳分析结果搜索
  3. 内外向算法解决第三个问题,即参数估计

PCFG的评价

优点:

  • 可利用概率减少分析过程的搜索空间;
  • 可利用概率对概率较小的子树剪枝,加快分析效率;
  • 可以定量地比较两个语法的性能。

弱点:

  • 分析树的概率计算条件非常苛刻,甚至不够合理。

短语结构分析方法评估

 

### 自然语言处理句法分析的技术与实现 #### 句法分析的任务描述 句法分析的主要任务在于识别出句子所包含的句法成分及其相互间的关系,通常通过构建句法树的形式展示这种层次化的结构[^2]。 #### 基本概念和技术分类 句法分析可以分为几种主要类型: - **依存句法分析**:关注词语间的直接依赖关系,即某个词如何修饰另个词。这种方式能够更直观地反映语义信息。 - **短语结构句法分析**(也称为深层句法分析):侧重于解析整个句子由哪些子句组成,每个子句又包含了什么样的短语,进而形成完整的语法树。 - **浅层句法分析**(Chunking 或者轻量级句法分析):只做简单的分块操作而不深入到详细的内部结构,适用于快速预处理阶段[^1]。 #### 实现方法概览 对于上述不同类型的句法分析器而言,常见的实现途径包括但不限于以下几种: - **基于规则的方法**:利用手工编写的语法规则来进行匹配和推导。这种方法的优点是可以精确控制逻辑,缺点则是难以覆盖所有的特殊情况,并且维护成本较高。 - **统计模型驱动的方式**:采用概率图模型如隐马尔可夫模型(HMM),最大熵模型(MaxEnt)等训练数据集上的参数估计,从而预测最有可能的句法结构配置。这类方法相对灵活,能较好适应新样本的变化。 - **神经网络架构下的端到端学习框架**:近年来随着深度学习的发展,越来越多的研究集中在使用递归神经网络(RNNs),长短时记忆单元(LSTMs)以及变换器(Transformer)系列算法上。这些模型可以直接从原始文本输入映射至目标输出而无需显式的特征工程过程,在多个基准测试集中取得了优异的成绩[^3]。 ```python import spacy nlp = spacy.load('en_core_web_sm') doc = nlp(u'The quick brown fox jumps over the lazy dog.') for token in doc: print(f'{token.text} -> {token.dep_}') ``` 此Python代码片段展示了如何借助`spaCy`库执行英语句子的依存句法分析,其中`dep_`属性给出了各单词相对于其他单词的角色定义。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SaN-V

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值