关键字: [出海日城市巡展, Claude 3, 生成式Ai, 游戏体验创新, 游戏运营效率, 内容审核优化, 企业内部提效]
本文字数: 2600, 阅读完需: 13 分钟
导读
在本次演讲中,孟祥智介绍了亚马逊云科技如何利用生成式AI创新游戏体验,助力沐瞳科技高效游戏运营。他阐述了生成式AI在游戏行业的应用场景,包括素材生成、平台运营、企业内部提效和游戏智能体等。重点介绍了利用Bedrock的Claude 3模型进行内容审核、用户反馈分析、代码生成等,帮助沐瞳科技提高运营效率,优化用户体验。演讲还分享了Claude 3模型在上下文理解、视觉分析等方面的优势,以及在防止模型越狱方面的安全性。
演讲精华
以下是小编为您整理的本次演讲的精华,共2300字,阅读时间大约是12分钟。
各位下午好,我是亚马逊云科技的解决方案架构师孟祥智,很高兴今天有机会与大家分享一次关于亚马逊云科技如何利用生成式人工智能(Generative AI)来创新游戏体验,助力游戏公司高效运营的主题。
生成式AI在近两年迅速发展,根据Gartner的研究报告预计,未来一段时间内,生成式AI相关技术或工具将在一定程度上影响80%的职业领域,游戏行业自然也不例外。从去年开始,我们已经观察到游戏行业客户陆续开始尝试将生成式AI应用于多个领域,总体可分为以下几个方面:
首先是素材生成。很多游戏客户开始利用大模型去生成他们的游戏资产,比如图片资产、宣传语料等,以更高质量、更高效率的方式完成生成。同时,大模型强大的视觉理解能力也可以被运用于对图像内容进行分类标注和审核。比如,我们有一个客户案例,他们希望利用大模型对某些图片进行标签定义,将其归类为”日系萌妹子”等类别,同时还要求大模型审核图片内容,识别是否存在涉黄涉暴涉恐等不当元素。在这个案例中,传统的机器学习模型很难理解”萌”的含义,而大模型凭借其对自然语言的出色理解能力,能够轻松获知”萌”的定义,并正确地对图像进行分类标注和审核,效果令人满意。
其次是平台运营方面的应用。对于游戏内允许用户生成内容(UGC)的场景,我们无法避免需要对这些内容进行审核,以保证内容的安全合规性。在这种情况下,大规模利用生成式AI的能力可以大幅降低人工审核的成本。另外,游戏运营人员还需要及时收集玩家对新版本、新功能的使用反馈,而大语言模型则可以快速收集、评估和摘要海量玩家反馈,让运营人员能够高效理解用户需求。
第三是集中在企业内部的提效应用。不同部门如研发、运营等,都可以利用生成式AI的能力提升工作效率。比如利用代码生成和辅助工具如Copilot、CodeWhisperer等,可以帮助开发人员快速生成代码、检查漏洞和Bug、提高代码质量。再比如,我们可以利用大模型将自然语言查询转化为SQL语句,提升数据库的使用体验。另外,通过构建基于大模型的企业内部知识库和智能问答系统,员工可以高效获取所需信息。除此之外,大模型还可以被用于网页生成和流程自动化助手等应用场景。
第四是游戏智能体的创新应用。传统的游戏NPC和对战机器人往往依赖于固定的剧本,而现在我们可以尝试利用大语言模型,根据玩家的输入生成个性化的对话和反馈,实现”千人千面”的智能NPC和对战体验,打破剧本的限制。
以上是我们目前观察到的游戏行业客户在生成式AI领域的一些常见应用范式和探索。下面我将分别对几个核心应用场景做进一步阐述。
平台运营方面,大模型可以被应用于以下几个场景:文字内容审核、图片内容审核分析、玩家反馈收集和评估等。以文字内容审核为例,过去我们的审核流程是,在游戏对局结束后收集玩家的实时对话记录,然后维护一个关键词列表,如果对话记录中出现列表内的敏感词汇,则判定为存在辱骂行为。这种基于关键词匹配的方式显然存在缺陷,无法全面覆盖玩家日新月异的辱骂方式,也难以捕捉到对话语义和情感信息。
而大语言模型则天生具备强大的上下文理解能力,能够自动分析对话的语义,识别出辱骂、人身攻击等不当内容,从而大幅提高审核的准确率。我们有一家头部游戏公司客户”牧童”的案例可以佐证这一点。牧童是一款现象级MOBA手游的运营商,在东南亚地区有着庞大的用户群体,每天产生的游戏内对话数量也是惊人的。过去他们采用的是上述基于关键词匹配的审核流程,需要大量人力进行二次确认,工作效率低下。
在引入生成式AI大模型后,他们将关键词匹配这一环节替换为大模型的语义分析,从而大幅降低了人工二次确认的工作量。根据他们的反馈,与传统方案相比,大模型不仅在响应时间上更有优势,而且对于辱骂内容的识别准确率也显著更高。通过持续地将人工审核结果反哺给大模型,他们还可以不断优化模型的判断能力,形成一个良性循环。
除了辱骂识别,大模型在玩家反馈收集和评估方面也有着广阔的应用前景。以牧童为例,他们每日有约14,000条来自不同渠道的游戏评论需要处理,数量之大使得人工分析和统计存在很大挑战。通过部署大模型,他们可以对这些海量文本进行自动分类、摘要和量化,快速分析出差评占比、差评原因等关键信息,为游戏的迭代优化提供重要依据。
从案例中可以看出,生成式AI的引入极大地提升了游戏公司的运营效率,降低了人力成本,有助于他们更好地聚焦于提升用户体验。
在企业内部提效方面,生成式AI也有诸多应用场景值得探索。以代码生成和辅助为例,亚马逊云科技推出的Copilot、CodeWhisperer等工具可以直接插入开发环境,帮助开发人员自动生成代码、检查漏洞和Bug、提高代码质量。这不仅提升了开发效率,也有利于提高代码的可维护性和安全性。
另一个常见的应用场景是利用大模型将自然语言查询转化为SQL语句,提升数据库的使用体验。对于缺乏SQL知识的前端、运营等人员而言,如果需要查询后端数据库的内容,过去往往是一件费时费力的事情。而现在,他们只需用自然语言描述查询需求,大模型就可以自动将其转化为相应的SQL语句,并在数据库中查询出所需结果,极大地简化了查询流程。
除此之外,我们也观察到不少游戏公司开始基于大模型构建企业内部知识库和智能问答系统。以远光巴士项目组为例,他们利用亚马逊云科技的大模型服务,连接自身的Wiki文档库和游戏知识库,对外提供智能问答机器人。员工可以通过自然语言与机器人对话,快速获取所需的游戏知识、使用方法等信息,显著提升了知识获取的效率。
这种应用不仅局限于企业内部,也可以面向玩家提供智能NPC,为游戏体验赋能。比如,NPC可以连接企业知识库,在玩家咨询时,根据大模型的自然语言理解和问答能力,给出关于游戏道具、技能的自定义解答,为玩家提供更佳的游戏体验。
网页生成和流程自动化助手也是生成式AI在企业内部的常见应用场景。以远光巴士为例,他们的后端开发人员由于缺乏前端技术,在开发内部工具时,网页生成环节往往是一个瓶颈。通过调用大模型,他们只需用自然语言或图片描述所需网页的功能和样式,大模型就可以快速生成所需的前端页面,极大提升了工具的迭代速度。
此外,大模型还可以被用于自动化流程,如机器自动运维、自动巡检等,减少人力劳动。从案例中可以看出,生成式AI的应用场景遍及企业内部的方方面面,有望全面提升企业的工作效率。
在游戏智能体方面,生成式AI也有着广阔的应用前景。传统的游戏NPC和对战机器人往往依赖于固定的剧本,难以做到个性化和多样化的交互体验。而现在,我们可以尝试利用大语言模型的强大能力,根据玩家的输入生成动态的对话内容,实现”千人千面”的智能NPC和对战体验。
这种应用我们已经看到了一些尝试,比如一些游戏公司开始打造所谓的”虚拟女友”。这种虚拟女友是基于大模型训练的智能对话系统,能够根据用户的不同输入和情绪状态,生成相应的个性化回复,从而模拟出一种”有生命”的虚拟伴侣体验。
除了虚拟伴侣,智能NPC和对战机器人也是生成式AI在游戏智能体领域的重要应用方向。通过prompt engineering,我们可以用自然语言的方式,清晰地向大模型描述我们对NPC或对战机器人的功能需求,大模型就可以基于这些指令生成所需的个性化对话内容。
比如,我们希望NPC能根据玩家的不同情绪状态做出相应的反应,给予安慰或是伴随一起高兴;或者我们希望对战机器人能根据不同的战况生成与之匹配的战术策略和语音指令。过去,要实现这种”千人千面”的智能体往往需要大量的人工代码,而现在生成式AI为我们提供了一种全新的实现路径。
通过以上几个核心应用场景的分析,我们可以看到,生成式AI给游戏行业带来了巨大的创新机遇,无论是提升运营效率、优化用户体验,还是激发创意,开辟全新的游戏体验,都有着广阔的应用前景。而支撑这一切创新的,则是大模型公司在模型性能和成本等方面的不断突破。
以Anthropic公司的大模型Claude为例,它在多项评测中都展现出了优于同规格GPT模型的性能表现,特别是在安全性、视觉理解、上下文窗口等关键指标上有着突出的优势。Claude 3是目前该系列模型的最新版本,其视觉理解能力得到了大幅提升,可以直接对图像、PDF等富媒体内容进行分析,在报告洞察、OCR等场景中表现出色。
同时,Claude 3的上下文窗口已经达到了200K Token的规模,相当于可以一次性处理十几万字的文本输入,并能准确地从海量信息中”捞”出所需的内容,展现出了强大的大规模文本处理能力。这一能力不仅可以应用于文本摘要、语义分析等传统场景,也为游戏剧情生成、NPC对话等创新应用打开了新的可能性。
除了性能之外,成本也是大模型公司竞争的重要领域。根据我们的测算,在大部分应用场景下,Claude 3相比同规格的GPT模型,能够提供更优的性价比。以输入Token计费为例,Claude 3的费用只有GPT 3.5的一半左右,且在智能化程度和推理速度上也有一定优势,尤其是在需要快速响应的ToC场景,Claude的优势更加明显。
通过不断的模型迭代,大模型公司正在为游戏行业带来越来越多的新选择。未来,我们有理由相信,生成式AI将会给游戏公司的运营效率、用户体验和创意空间带来革命性的变革,成为这个行业发展的重要驱动力。
总的来说,生成式人工智能在游戏行业的应用还处于探索阶段,但已初见成效,展现出了提升效率、优化体验、激发创意的巨大潜力。大模型公司通过不断迭代突破,在模型性能、成本等层面为游戏公司带来了新的选择。相信在不久的将来,生成式AI必将在游戏行业掀起更多创新的浪潮。
总结
在这场精彩的演讲中,孟祥智先生分享了亚马逊云科技如何利用生成式人工智能(AI)创新游戏体验,助力游戏公司高效运营。他首先概述了生成式AI在各行业的广泛应用前景,尤其是在游戏行业的四大应用场景:素材生成、平台运营、企业内部提效和游戏智能体。
接着,孟先生重点介绍了平台运营方面的应用,如利用大语言模型进行内容审核、玩家反馈收集和分析等,大幅降低人工成本。他还分享了企业内部提效的案例,包括代码生成、知识库构建和智能问答助手等,提高开发和运营效率。最后,他深入探讨了Amazon Bedrock Claude 3模型的优势,如强大的视觉能力、超长上下文理解能力和出色的安全性,并结合牧童科技的实际应用案例,展示了Claude 3在游戏运营中的卓越表现。
孟先生呼吁游戏公司紧抓生成式AI的机遇,利用云端AI能力创新游戏体验,提升运营效率,为玩家带来更加智能化和个性化的游戏体验。