SwinIR: Image Restoration Using Swin Transformer论文笔记

前言

该算法将Swin Transformer应用于图像复原的领域,主要网络结构分为三个部分:①浅层特征提取 ②深层特征提取 ③高质量图像重建。主要应用于图像复原的三个方向,图像超分辨、图像降噪、由于JPEG压缩造成的伪影减少。主要是借鉴了Swin Transformer即有局部特征又可以全局特征的特点,而且可以使用更少的参数来达到更好的效果。

网络框架

下图是SwinIR的整体框架图,主要包括三个部分,第一个部分是浅层特征提取网络,主要提取图像里面的低频信息;第二个部分是深层特征提取网络,主要提取高频信息,这也是最重要的一环,因为图像复原主要是恢复图像的高频信息;最后一个是根据前面提取到的信息进行图像重建。

 图1 SwinIR框架图

1. 浅层特征提取

文章里面直接使用了一个3×3的卷积核对大小为H×W×C的输入图像进行特征提取,给出的解释是卷积层有利于Transformer的早期图像处理,可以带来更好的结果。引用的论文为:Early Convolutions Help Transformers See Better,感兴趣可以自己去了解下。

2.深层特征提取

深层特征提取为重点,主要也是参考了Swin Transformer来进行设计的,是一个叫RSTB模块,如下图左,整个模块的为串联结构,主要由STL的子模块和一个3×3的卷积层组成(我也不知道为什么要用一个3×3

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值